Edelmetalle


Edelmetalle
Die Edelmetalle im PSE:
Gelb - klassisches Edelmetall;
orange - Halbedelmetall;
hellgelb - kurzlebiges radioaktives Edelmetall
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn
 
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Edelmetalle sind Metalle, die besonders korrosionsbeständig sind. Einige Edelmetalle, zum Beispiel Gold und Silber, sind deswegen seit dem Altertum zur Herstellung von Schmuck und Münzen in Gebrauch. Im Laufe der letzten vier Jahrhunderte wurden die Platinmetalle entdeckt, die eine ähnliche Korrosionsbeständigkeit wie Gold zeigen.

Inhaltsverzeichnis

Edelmetalle im klassischen Sinn

Zu den Edelmetallen im klassischen Sinn gehören die Platinmetalle sowie Gold und Silber. Teilweise wird auch noch Quecksilber zu den Edelmetallen gezählt, obwohl es in vieler Hinsicht reaktiver als die übrigen Edelmetalle ist. Edelmetalle korrodieren (verrosten, oxidieren) bei Raumtemperatur an Luft entweder gar nicht, oder nur äußerst langsam und in sehr geringem Umfang, so wie es beim Silber der Fall ist, wenn es mit (Spuren von) Schwefelwasserstoff in Berührung kommt. Selbst dabei bildet sich nur eine extrem dünne Schicht von schwarzem Silbersulfid. Der Silbergegenstand wird dabei nicht beschädigt. Von Salzsäure werden die Edelmetalle nicht angegriffen. Edelmetalle zeichnen sich ferner dadurch aus, dass viele ihrer Verbindungen thermisch nicht stabil sind. So werden Silberoxid und Quecksilberoxid beim Erhitzen in ihre Einzelelemente zerlegt.

Halbedelmetalle

Im 19. und 20. Jahrhundert wurde die Theorie der Redoxreaktionen verfeinert. Neue Reaktionswege wurden entdeckt. Des Weiteren entwickelte man die elektrochemische Methode der Potentiometrie, mit der man die Stärke von Reduktionsmitteln und Oxidationsmitteln genau messen und vergleichen konnte. Dies gestattete auch eine verfeinerte Einteilung der Metalle nach ihrem edlen oder unedlen Charakter. Zu den Halbedelmetallen gehören demnach solche, die nicht unter Wasserstoffbildung mit wässrigen Lösungen nichtoxidierender Säuren wie zum Beispiel Salzsäure oder verdünnte Schwefelsäure reagieren. Das liegt an ihrem Standardpotential, welches höher als dasjenige des Wasserstoffs ist. Diese Metalle sind auch gegen Luftsauerstoff weitgehend inert. Aus diesem Grund kommen sie in der Natur gelegentlich gediegen vor.


Klassische Edelmetalle und die Halbedelmetalle Kupfer und Rhenium

Metalle wie Bismut und Kupfer liegen mit ihrem Standardpotential deutlich näher am Wasserstoff als die klassischen Edelmetalle. An Luft korrodieren sie schneller, und in oxidierenden Säuren wie konzentrierte Schwefelsäure oder halbkonzentrierte (30-prozentige) Salpetersäure lösen sie sich zügig. Im chemischen Sinne sind Halbedelmetalle also alle Metalle, die in der elektrochemischen Spannungsreihe ein positives Standardpotential gegenüber Wasserstoff besitzen, ansonsten aber nicht so korrosionsbeständig wie klassische Edelmetalle sind. Nach dieser Definition ist auch das künstliche und radioaktive Technetium als halbedel zu bezeichnen. Diese Halbedelmetalle nehmen also eine Zwischenstellung zwischen den klassischen edlen und unedlen Metallen ein. Selbst Nickel und Zinn werden von einigen Autoren dazugezählt, obwohl ihr Standardpotential etwas unter dem Wasserstoff liegt.

Kurzlebige radioaktive Edelmetalle

Theoretische Überlegungen aufgrund quantenmechanischer Berechnungen sprechen dafür, dass auch die künstlichen Elemente Bohrium, Hassium, Meitnerium, Darmstadtium, Roentgenium und Copernicium Edelmetalle sind. Praktische Bedeutung kommt diesen Metallen allerdings nicht zu, da ihre bekannten Isotope äußerst instabil sind und schnell (typischerweise in wenigen Sekunden, maximal in circa 1 Stunde für Mt-278) radioaktiv zerfallen.

Unedle Metalle

Klar abzugrenzen sind die unedlen Metalle wie Aluminium, Eisen und Blei. Da ihr Standardpotential kleiner als das von Wasserstoff ist, werden sie von nichtoxidierenden Säuren angegriffen. Das kann, wie beim Blei, auch recht langsam erfolgen. "Nichtoxidierend" bedeutet hierbei, dass sich kein stärkeres Oxidationsmittel als das Wasserstoffion in der Lösung befindet.

Weitere korrosionsbeständige Metalle

Neben den Edelmetallen gibt es auch noch einige Metalle, die in Folge ihrer Passivierung mitunter eine hohe Korrosionsbeständigkeit besitzen, die je nach chemischem Milieu auch manche Edelmetalle zum Teil übertrifft. Dies sind die Elemente der 4. Nebengruppe (Titan, Zirconium und Hafnium), die der 5. Nebengruppe (Vanadium, Niob und Tantal) sowie die der 6. Nebengruppe (Chrom, Molybdän und Wolfram). Weitere technisch bedeutende Metalle, die Passivschichten bilden, sind Zink (12. Nebengruppe), Aluminium (3. Hauptgruppe) sowie Silicium und Blei (4. Hauptgruppe).

Reaktionen der Edelmetalle

Mit geeigneten aggressiven Chemikalien kann man alle Edelmetalle in Lösung bringen. Gold und einige Platinmetalle lösen sich zügig in Königswasser. Silber sowie die Halbedelmetalle reagieren lebhaft mit Salpetersäure. Im Bergbau werden Cyanidlösungen in Verbindung mit Luftsauerstoff verwendet, um Gold und Silber aus Gesteinen zu lösen. Der Angriff durch den Luftsauerstoff ist nur möglich, weil sich als Produkte stabile Cyanidokomplexe mit Gold und Silber bilden. Auch im Königswasser ist die Bildung stabiler Komplexverbindungen (Chloridokomplexe) mit entscheidend für die oxidierende Wirkung des Milieus. Edelmetalle verhalten sich im übrigen häufig gar nicht „edel“ gegenüber sehr elektropositiven Metallen, sondern bilden hier häufig bereitwillig und unter Energiefreisetzung Intermetallische Phasen.

Physikalische Auffassung vom Edelmetallcharakter

Im physikalischen Sinn ist die Menge der Edelmetalle noch bedeutend kleiner; es sind nur Kupfer, Silber und Gold. Das Kriterium zur Klassifizierung ist die elektronische Bandstruktur. Die drei aufgeführten Metalle besitzen alle vollständig gefüllte d-Bänder, die damit nicht zur Leitfähigkeit und praktisch nicht zur Reaktivität beitragen. Für Platin gilt dies z. B. nicht. Zwei d-artige Bänder kreuzen das Ferminiveau. Das führt zu einem anderen chemischen Verhalten, weshalb Platin, im Gegensatz zu Gold, auch gern als Katalysator benutzt wird. Besonders auffällig ist der Unterschied bei der Herstellung reiner Metalloberflächen im Ultrahochvakuum. Während z. B. Gold vergleichsweise leicht zu präparieren ist und nach der Präparation lange rein bleibt, bindet sich an Platin oder auch Palladium sehr schnell Kohlenstoffmonoxid.

Chemisches Verständnis von Edelmetallen

Wie schon bei den unedlen Metallen angedeutet, sind Edelmetalle und Halbedelmetalle einfach metallische Elemente (und eventuelle gewisse Legierungen, wie z.B. Edelstähle) deren Normalpotential positiv gegenüber der Wasserstoffelektrode ist, sprich von verdünnten Säuren nicht angegriffen werden. Die Elemente die in Betracht kommen sind somit, sortiert nach ihrem Normalpotential gegenüber der H-Elektrode in wässriger Lösung bei pH 7:

Name Gruppe Reaktion Potential
Gold Ib/6 Au → Au3+ 1.498 V
Platin VIIIb/6 Pt → Pt2+ 1.18 V
Iridium VIIIb/6 Ir → Ir3+ 1.156 V
Palladium VIIIb/5 Pd → Pd2+ 0.987 V
Osmium VIIIb/6 Os → Os2+ 0.85 V
Silber Ib/5 Ag → Ag+ 0.799 V
Quecksilber IIb/6 2 Hg → Hg22+ 0.7973 V
Polonium VIa/6 Po → Po2+ 0.65 V[1]
Rhodium VIIIb/5 Rh → Rh2+ 0.60 V
Ruthenium VIIIb/5 Ru → Ru2+ 0.45 V
Kupfer Ib/4 Cu → Cu2+ 0.337 V
Bismut Va/6 Bi → Bi3+ 0.32 V
Technetium VIIb/5 Tc → Tc4+ 0.272 V
Rhenium VIIb/6 Re → Re4+ 0.259 V
Antimon Va/5 Sb → Sb3+ 0.152 V

Antimon zählt als Halbmetall nicht dazu und bei Polonium ist es wahrscheinlich seine starke Radioaktivität und makroskopische Unverfügbarkeit (vor dem Bau von Kernreaktoren), wegen der man es klassisch nicht als Edelmetall angesehen hatte -- heutzutage ist es aber in Gramm-Mengen verfügbar. Die Unterteilung, sprich Potentialgrenze, dieser Elemente in Edelmetalle und Halbedelmetalle ist ziemlich willkürlich und wird nicht einheitlich gehandhabt. Sie wird aber meistens zwischen Kupfer und Ruthenium gezogen [2], da letztere prinzipiell durch feuchte Luft aufgrund der Redoxreaktion O2 + 2 H2O + 4 e ⇄ 4 OH(aq) mit einem Normalpotential von +0.4 V angegriffen werden können.

Umgangssprachlicher Gebrauch

Im Sprachgebrauch von Sportreportagen, vor allem über Medaillen während der Olympischen Spiele, wird fälschlicherweise auch die Bronze zu den Edelmetallen gezählt.

Siehe auch

Redoxreihe | Unedle Metalle | Edelmetall-Scheidung

Weblinks

Wiktionary Wiktionary: Edelmetall – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Referenzen

  1. Holleman, Wiberg, "Lehrbuch der Anorganischen Chemie", 102. Auflage, WdG, 2007, p. 2009
  2. Holleman, Wiberg, "Lehrbuch der Anorganischen Chemie", 91.-100. Auflage, WdG, 1985

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Edelmetalle — Edelmetalle, im chemischen Sinne diejenigen Metalle (s. d.), die wegen ihrer geringen Verwandtschaft zum Sauerstoff in feuchter Luft unverändert bleiben, im volkswirtschaftlichen Sinne nur diejenigen, die sehr kostbar sind und für Luxus , insbes …   Meyers Großes Konversations-Lexikon

  • Edelmetalle — Edelmetalle,   im elementaren Zustand sehr beständige Metalle, die deshalb häufig gediegen vorkommen; zu ihnen gehören Gold, Silber, Quecksilber, Rhenium und die Platinmetalle (Ruthenium, Rhodium, Palladium, Osmium, Irid …   Universal-Lexikon

  • Edelmetalle — Edelmetalle, im chem. Sinn die Metalle, welche von Sauerstoff und Wasser nicht angegriffen werden und sich aus ihren Sauerstoffverbindungen durch bloßes Erhitzen wieder ausscheiden lassen, bes. Gold, Silber und Platin …   Kleines Konversations-Lexikon

  • Edelmetalle — taurieji metalai statusas T sritis ekologija ir aplinkotyra apibrėžtis Cheminiam poveikiui labai atsparūs metalai: auksas, platina, iridis, osmis, sidabras, paladis, rodis, rutenis. Auksas, sidabras ir platina nesioksiduoja ore; iridis, rutenis… …   Ekologijos terminų aiškinamasis žodynas

  • Forschungsinstitut für Edelmetalle und Metallchemie — Das FEM von Westen Das Forschungsinstitut für Edelmetalle und Metallchemie (FEM) ist ein unabhängiges Forschungsinstitut in Schwäbisch Gmünd, das wissenschaftliche und angewandte Forschung betreibt, insbesondere auf dem Gebiet der Edelmetalle und …   Deutsch Wikipedia

  • Edelmetall — Die Edelmetalle im PSE: Gelb klassisches Edelmetall; orange Halbedelmetall; hellgelb kurzlebiges radioaktives Edelmetall H He Li Be B C N O F Ne Na Mg Al …   Deutsch Wikipedia

  • Edle Metalle — Die Edelmetalle im PSE: Gelb klassisches Edelmetall; orange Halbedelmetall; hellgelb kurzlebiges radioaktives Edelmetall H He Li Be B C N O F Ne Na Mg Al …   Deutsch Wikipedia

  • Halbedelmetall — Die Edelmetalle im PSE: Gelb klassisches Edelmetall; orange Halbedelmetall; hellgelb kurzlebiges radioaktives Edelmetall H He Li Be B C N O F Ne Na Mg Al …   Deutsch Wikipedia

  • Goldpreis — Gold Staat: global Unterteilung: 1 Feinunze = 31,1034768 Gramm ISO 4217 Code: XAU Abkürzung: keine Wechselkurs: (18. November 2011) 1 XAU = 1.719 USD 10.000 USD = 5,817 …   Deutsch Wikipedia

  • Diskografie von Michael Jackson — Dieser Artikel behandelt die Diskografie des US amerikanischen R B und Popsängers Michael Jackson. Inhaltsverzeichnis 1 Alben 1.1 Studioalben 1.2 Sonstige Alben 1.3 …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.