Lipschitz-Stetigkeit


Lipschitz-Stetigkeit

Lipschitz-Stetigkeit (nach Rudolf Lipschitz) bezeichnet in der Analysis eine Verschärfung der Stetigkeit. Anschaulich gesprochen kann eine Lipschitz-stetige Funktion sich nur beschränkt schnell ändern: für je zwei Punkte auf dem Graph der Funktion hat die Sekante eine Steigung, deren Betrag nicht größer ist als eine Konstante, die Lipschitz-Konstante.

Eine Verallgemeinerung der Lipschitz-Stetigkeit ist die Hölder-Stetigkeit.

Inhaltsverzeichnis

Definition

Eine Funktion f\colon\R\rightarrow\R heißt Lipschitz-stetig, wenn eine Konstante L existiert, so dass

|f(x_1)-f(x_2)|\le L \cdot |x_1-x_2|

für alle x_1, x_2 \in \R.

Dies ist ein Spezialfall der folgenden, allgemeinen Definition.

Seien (X,dX) und (Y,dY) metrische Räume. Eine Funktion f:X\rightarrow Y heißt Lipschitz-stetig, falls es eine reelle Zahl L gibt, sodass

\forall x_1,x_2 \in X : d_Y(f(x_1),f(x_2)) \le L \cdot d_X(x_1,x_2)

erfüllt ist. L wird Lipschitz-Konstante genannt und es gilt stets L \geq 0. Anschaulich gesprochen ist der Betrag der Steigung von f nach oben durch L beschränkt. Ist eine Funktion Lipschitz-stetig, so sagt man auch, sie erfülle die Lipschitz-Bedingung.

Eine Abschwächung der Lipschitz-Stetigkeit ist die lokale Lipschitz-Stetigkeit. Eine Funktion f\colon X\rightarrow Y heißt lokal Lipschitz-stetig, wenn es um jeden Punkt in X eine Umgebung gibt, sodass die Einschränkung von f auf diese Umgebung Lipschitz-stetig ist. Eine Funktion, die nur auf einer Teilmenge A\subset X definiert ist, heißt Lipschitz- oder lokal Lipschitz-stetig, wenn sie Lipschitz- oder lokal Lipschitz-stetig bezüglich der metrischen Räume (A,dX | A) und (Y,dY) ist.

Eigenschaften

Lipschitz-stetige Funktionen sind lokal Lipschitz-stetig (wähle ganz X als Umgebung und stets L als Lipschitz-Konstante). Lokal Lipschitz-stetige Funktionen sind stetig (wähle δ = ε / L in der ε-δ-Definition der Stetigkeit), und entsprechend sind Lipschitz-stetige Funktionen gleichmäßig stetig. Daher ist Lipschitz-Stetigkeit „stärker“ als gleichmäßige Stetigkeit. Die Umkehrung gilt im Allgemeinen nicht, so ist z. B. die Funktion f\colon[0,1]\rightarrow\R,~x\mapsto\sqrt x zwar Hölder-stetig mit Exponenten 1 / 2 und daher gleichmäßig stetig, jedoch nicht Lipschitz-stetig (siehe Beispiel).

Nach dem Satz von Rademacher ist eine lipschitzstetige Funktion fast überall differenzierbar. Es gibt jedoch auch Funktionen, die zwar differenzierbar, aber nicht lipschitzstetig sind, z. B. f\colon\R\rightarrow\R,~x\mapsto x^2. Eine differenzierbare Funktion f\colon (a,b)\rightarrow\R mit a,b\in\R\cup\{\pm\infty\} ist genau dann lipschitzstetig, wenn ihre erste Ableitung beschränkt ist.

Anwendung

Lipschitz-Stetigkeit ist ein wichtiges Konzept in der Theorie gewöhnlicher Differentialgleichungen, um Existenz und Eindeutigkeit von Lösungen zu beweisen (siehe Satz von Picard-Lindelöf). Abbildungen mit einer Lipschitz-Konstante kleiner als eins nennt man Kontraktion. Diese sind wichtig für den Fixpunktsatz von Banach.

Beispiele

Für eine Lipschitz-stetige Funktion f\colon(X,d_X)\rightarrow (Y,d_Y) ist der Quotient

\frac{d_Y(f(x),f(y))}{d_X(x,y)}

mit x\neq y\in Xdurch jede Lipschitz-Konstante von f nach oben beschränkt. Für lokal Lipschitz-stetige Funktionen ist der Quotient auf hinreichend kleinen Umgebungen beschränkt.

Daher ist die Funktion f\colon [0,1]\to\R mit x\mapsto\sqrt x wegen

\frac{|f(x)-f(0)|}{|x-0|}=\frac 1{\sqrt x}\xrightarrow{x\searrow 0}\infty

zwar stetig und sogar gleichmäßig stetig, jedoch nicht lokal Lipschitz-stetig und folglich auch nicht Lipschitz-stetig.

Für die Funktion g:[a,b]\to\R mit x\mapsto x^2 folgt mit

L:=\max_{x,y \in [a,b]}(|x+y|)=2\max{(|a|,|b|)},

dass

|g(x)-g(y)|=|x^2-y^2|=|x+y|\cdot|x-y|\leq L\cdot |x-y|.

Das heißt, L ist eine Lipschitz-Konstante für diese Funktion.

Weil für g der Quotient gleich | x + y | ist, folgt, dass g nur für einen beschränkten Definitionsbereich Lipschitz-stetig ist, für einen unbeschränkten jedoch nicht.

Literatur

  • Harro Heuser: Lehrbuch der Analysis - Teil 1, 6-te Auflage, Teubner 1989, ISBN 3-519-42221-2, S. 136, 212
  • Konrad Köngisberger: Analysis 1. 2-te Auflage, Springer 1992, ISBN 3-540-55116-6, S. 80

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Lipschitz-Bedingung — Lipschitz Stetigkeit (nach Rudolf Lipschitz) ist ein Begriff aus der Analysis. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Anwendung 4 Beispiele // …   Deutsch Wikipedia

  • Lipschitz-stetig — Lipschitz Stetigkeit (nach Rudolf Lipschitz) ist ein Begriff aus der Analysis. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Anwendung 4 Beispiele // …   Deutsch Wikipedia

  • Stetigkeit (Mathematik) — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia

  • Stetigkeit — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia

  • Rudolf Lipschitz — Rudolf Otto Sigismund Lipschitz (* 14. Mai 1832 in Königsberg (Preußen); † 7. Oktober 1903 in Bonn) war ein deutscher Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Hölder-Stetigkeit — Die Hölder Stetigkeit (nach Otto Hölder) ist ein Konzept der Mathematik, das vor allem in der Theorie der partiellen Differentialgleichungen von zentraler Bedeutung ist. Sie ist eine Verallgemeinerung der Lipschitz Stetigkeit. Inhaltsverzeichnis… …   Deutsch Wikipedia

  • Gleichmäßige Stetigkeit — ist ein Begriff aus der Analysis. Er bezeichnet einen Spezialfall der Stetigkeit. Inhaltsverzeichnis 1 Definition 1.1 Beispiele 1.2 Verallgemeinerung: metrische Räume …   Deutsch Wikipedia

  • Absolute Stetigkeit — In der Analysis ist die absolute Stetigkeit einer Funktion eine Verschärfung der Eigenschaft der Stetigkeit. Der Begriff wurde 1905 von Giuseppe Vitali eingeführt und erlaubt eine Charakterisierung von Lebesgue Integralen.[1] In der Maßtheorie… …   Deutsch Wikipedia

  • Lipschitzkonstante — Lipschitz Stetigkeit (nach Rudolf Lipschitz) ist ein Begriff aus der Analysis. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Anwendung 4 Beispiele // …   Deutsch Wikipedia

  • Lipschitzstetig — Lipschitz Stetigkeit (nach Rudolf Lipschitz) ist ein Begriff aus der Analysis. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Anwendung 4 Beispiele // …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.