Hammond-Orgel

Hammond-Orgel
Hammond-Orgel
Hammond l100.jpg
Klassifikation Elektrophon
Tasteninstrument
Tonumfang C1-fis5
Klangbeispiel siehe unten unter Effekte
Verwandte Instrumente Orgel
Musiker
siehe unten unter Hammond-Orgel-Musik

Die Hammond-Orgel (auch kurz Hammond) ist eine nach ihrem Erfinder Laurens Hammond benannte elektromechanische Orgel.

Ursprünglich als Ersatz für die Pfeifenorgel gedacht, wurde sie über den Einsatz als Unterhaltungsinstrument schnell zum Instrument des Jazz; als preisgünstiger Pfeifenorgelersatz in amerikanischen Kirchen wanderte sie in die Gospel-Musik ein. Von dort breitete sich die Hammond-Orgel in Rock, Rhythm and Blues, Soul, Funk, Ska, Reggae, Fusion usw. aus. Als vollständiger Pfeifenorgelersatz konnte sich die Hammondorgel jedoch nicht durchsetzen.

Größte Popularität erlangte sie in den 1960er und 1970er Jahren; damals kam im Mainstream kaum eine Band ohne Orgel aus. Aber auch heute noch sind ihr unverwechselbarer Klang beziehungsweise Nachahmungen dieses Klanges in der Populärmusik weit verbreitet. Im Laufe der Jahrzehnte wurde die Hammond-Orgel (vor allem das Modell B3 in Verbindung mit einem Leslie-Lautsprechersystem) zu einem etablierten Instrument.

Allen Instrumenten gemein ist der Aufbau mit zwei Manualen und Pedal. Tonumfang der Manuale und des Pedals sind bei den verschiedenen Modellen jedoch unterschiedlich. Das Obermanual wird als Swell, das Untermanual als Great bezeichnet. Diese Bezeichnungen sind der Pfeifenorgel entlehnt und bedeuten dort Hauptwerk (Great) und Schwellwerk (Swell).

Inhaltsverzeichnis

Geschichte

Laurens Hammond, selbst kein Musiker, erfand um 1920 für von ihm produzierte Uhren einen Wechselstrom-Synchronmotor. Von 1932 an suchte er weitere Anwendungsmöglichkeiten für diesen Motor. Durch den Boom von Theater- und Kinoorgeln und angeregt von einem Firmenmitarbeiter, der Organist einer Kirchgemeinde war, kam ihm 1933 die Idee zur Konstruktion des Tonerzeugungsprinzips der Hammond-Orgel. Ein altes Klavier und zahllose Experimente führten dazu, dass er am 19. Januar 1934 für dieses Instrument ein Patent beantragte. Die Vorführung war so beeindruckend, dass ihm bereits am 24. April 1934 vom US-Patentamt in Washington (D.C.) das Patent für den packing box prototype unter dem Namen Electrical Musical Instrument zugesprochen wurde (US-Patent 1.956.350[1]). Zuerst wurde die Orgel am 15. April 1935 vom Organisten Pietro Yon bei einer Pressevorführung in der New Yorker St.-Patrick-Kathedrale der Öffentlichkeit vorgestellt. Henry Ford erteilte kurz darauf einen Auftrag über sechs Orgeln. Weitere prominente Erstbesteller waren George Gershwin und Count Basie. Im Laufe der Jahre entwickelte sich die Orgel zu einem für bestimmte Musikstile charakteristischen Instrument vor allem in Verbindung mit dem Leslie, einer Lautsprecherbox, bei der der Klang mittels rotierender Reflektoren einen schwebenden Effekt erhält (erfunden von Donald Leslie). Seit 1936 wurde das Instrument erfolgreich in Deutschland angeboten in Konkurrenz zu Edwin Weltes letztendlich erfolgloser Lichttonorgel.

Technik

Tonrad rotiert vor einem elektromagnetischen Tonabnehmer

Die Tonerzeugung der Hammond-Orgel beginnt im sogenannten Generator. Dabei rotieren stählerne Tonräder mit einem gewellten Rand vor elektromagnetischen Tonabnehmern (Permanentmagnete in Spulen). Durch die Wellenform entfernt und nähert sich der Rand des Rades periodisch dem Permanentmagneten. Dieses ändert den magnetischen Fluss, wodurch in der Spule eine Wechselspannung induziert wird. Auf Grund der Form des Rades ergibt sich eine sinusähnliche Schwingung. Diese wird durch eine Filterschaltung weiter geglättet, so dass eine fast ideale Sinusform entsteht. Die erzeugten Wechselspannungen in der Größenordnung von einigen Millivolt werden dann durch die Manuale, die Zugriegel und den Scanner (Vibrato- und Chorusschaltung) geleitet. Am Ende der Verarbeitungskette liegt eine Verstärkerstufe, die das Tonsignal so weit verstärkt, dass ein Lautsprecher angesteuert werden kann.

Der Generator enthält zwischen 86 und 96 Tonräder unterschiedlicher Zähnezahl. Diese werden von einem Synchronmotor angetrieben, der zum Start mit einem Hilfsmotor auf ungefähre Synchrondrehzahl gebracht werden muss[2]. Nach dem Hochlauf auf ungefähre Synchrondrehzahl ist die Drehzahl dieses Motors nur noch von seiner Polpaarzahl und der Netzfrequenz abhängig. Das kann sich zum Nachteil erweisen, wenn bei einer Freiluftveranstaltung der Strom aus Generatoren nicht frequenzstabil ist[3]. Der Antriebsmotor ist mit der Hauptwelle durch ein Schwungrad-Feder-System elastisch verbunden, um diese vom rauen Lauf (das Drehmoment ist über eine Motorumdrehung nicht konstant) zu entkoppeln. Zur Entkopplung mechanischer Geräusche sind beide im Gehäuse federnd aufgehängt.

Aufbau und Pflege

Die Tonräder sitzen auf mehreren (48 bei den Konsolen- bzw. 42 bei den Spinettmodellen) Stahlwellen, die in Bronzebuchsen gelagert sind. Nach vorne und hinten ragen die Magnetkerne der Tonabnehmer aus dem Gehäuse des Generators, der ungefähr halb so breit ist wie die ganze Orgel. Über den Abstand der Magnetkerne zu den jeweiligen Tonrädern kann die Lautstärke der Einzeltöne justiert werden. Die Tonräder sitzen nicht chromatisch nach Tonhöhe sortiert entlang der Hauptwelle, sondern sind in Kammern zu je vier Stück mit gleicher Übersetzung angeordnet. Zwei dieser Kammern, also insgesamt acht Tonräder, erzeugen die unterschiedlichen Oktavlagen der jeweiligen Töne. Über die Verdrahtung (Verharfung) werden die Töne mit den Kontakten der zuständigen Tasten verbunden. Der Signalpegel beträgt einige zehn Millivolt.

Die Bronzelager erfordern kontinuierliche Schmierung. Diese wird durch einen zu jedem Lager führenden Baumwollfaden (Docht) sichergestellt, der durch Kapillarwirkung Öl aus einer mittig längs (parallel zu den Wellen) an der Oberseite des Tongenerators verlaufenden Ölrinne saugt. Die Rinne (und auch das Scanner-Vibrato) wird über zwei kleine Trichter von oben mit Öl befüllt. Mindestens einmal jährlich soll geeignetes Öl nachgefüllt werden, so dass es einige mm hoch in den Trichtern steht.

Die Motor-Tongenerator-Einheit ist zur akustischen Entkoppelung federnd im Gehäuse der Orgel aufgehängt. Bei Auslieferung und bei größeren Transporten soll aber eine Transportsicherung angebracht werden, ähnlich wie bei anderen Geräten mit federnd aufgehängten Massen (Plattenspieler, Waschmaschine). Ein Kippen des Instrumentes ist unproblematisch. Es muss jedoch im Bezug auf das Ölen beachtet werden, dass in der Ölwanne lediglich der dort befindliche Filz angefeuchtet wird. Keinesfalls darf in der Wanne Öl stehen. Erstens würde dies beim Kippen der Orgel überlaufen, andererseits würde eine "Überölung" zur Beschädigung des Vibrato-Scanners führen.

Tonerzeugung

In Modellen, die mit 60 Hz Netzfrequenz betrieben werden, läuft ein sechspoliger Motor mit 1200 Umdrehungen pro Minute (20 Hz), in 50-Hz-Modellen ein vierpoliger Motor mit 1500 Umdrehungen pro Minute (25 Hz). Die zur Tonerzeugung erforderlichen Drehzahlen werden durch Zahnradgetriebe mit zwölf unterschiedlichen Übersetzungen bereitgestellt. Die dabei entstehenden zwölf verschiedenen Drehzahlen, mit denen sich die Tonräder auf den Tonradwellen drehen, ergeben näherungsweise die zwölf gleichstufig gestimmten chromatischen Töne einer Oktave.

Am Beispiel einer Orgel, die mit 60 Hz Netzfrequenz betrieben wird sowie 96 Tonräder und 61 Tasten (C-c4) je Manual hat, sollen die Verhältnisse näher erläutert werden: Bei 60 Hz Netzfrequenz dreht sich die Motorwelle des sechspoligen Synchronmotors mit 20 Hz. Die nachfolgende Tabelle zeigt für diesen Fall die zwölf Übersetzungen der Zahnradgetriebe, die zugehörigen Töne der tiefsten Oktave der Orgel (Kontraoktave: Tasten C bis H bei gezogenem 16′-Riegel) mit ihren Frequenzen und die Abweichungen zur gleichstufigen Stimmung:

Übersetzung Ton Frequenz Abweichung
85:104 Kontra-C 32,69 Hz −0,58 Cent
71:82 Kontra-Cis 34,63 Hz −0,68 Cent
67:73 Kontra-D 36,71 Hz +0,20 Cent
105:108 Kontra-Dis 38,89 Hz −0,09 Cent
103:100 Kontra-E 41,20 Hz −0,14 Cent
84:77 Kontra-F 43,64 Hz −0,68 Cent
74:64 Kontra-Fis 46,25 Hz +0,03 Cent
98:80 Kontra-G 49,00 Hz +0,02 Cent
96:74 Kontra-Gis 51,89 Hz −0,71 Cent
88:64 Kontra-A 55,00 Hz 0,00 Cent
67:46 Kontra-Ais 58,26 Hz −0,29 Cent
108:70 Kontra-H 61,71 Hz −0,59 Cent

Die Orgel ist auf den Kammerton a1 = 440 Hz gestimmt. Daher gibt es beim Ton Kontra-A und seinen Oktaven keine Abweichung.

Pro Übersetzung dreht sich ein Satz von acht Tonrädern mit unterschiedlicher Zahnzahl auf vier Tonradwellen (je zwei Tonräder sitzen auf einer Welle, mit der sie elastisch gekoppelt sind) zur Erzeugung der verschiedenen Oktavlagen der Töne:

Oktave Zahnzahl
Kontraoktave 2
Große Oktave 4
Kleine Oktave 8
Eingestrichene Oktave 16
Zweigestrichene Oktave 32
Dreigestrichene Oktave 64
Viergestrichene Oktave 128
Fünfgestrichene Oktave bis fis5 192

Bei der fünfgestrichenen Oktave kommen aus fertigungstechnischen Gründen keine Tonräder mit 256 Zähnen zum Einsatz. Auf den Tonradwellen für die Töne C bis E befinden sich zahnlose Räder ohne Tonabnehmer, die nur aus mechanischen Gründen montiert sind. Daher hat eine Orgel mit 96 Tonrädern nur 91 Tonräder, die jeweils einen Ton erzeugen. Die Tonräder mit 192 Zähnen für die Töne c5 bis fis5 befinden sich auf den Tonradwellen für die Töne F bis H. Das Verhältnis 192:256 Zähne ist gleich 3:4, was einer reinen Quarte entspricht. Deshalb produziert das Tonrad mit 192 Zähnen auf der Tonradwelle für den Ton F die Unterquarte zum Ton f5, also den Ton c5. Da die reine Quarte aber von der gleichstufigen Quarte abweicht und zusätzlich andere Abweichungen durch die Übersetzungen hinzu kommen, ergeben sich für die Töne der fünfgestrichenen Oktave andere Abweichungen von der gleichstufigen Stimmung:

Übersetzung Tonradwelle Ton Frequenz Abweichung
84:77 F c5 4189 Hz +1,27 Cent
74:64 Fis cis5 4440 Hz +1,98 Cent
98:80 G d5 4704 Hz +1,98 Cent
96:74 Gis dis5 4982 Hz +1,25 Cent
88:64 A e5 5280 Hz +1,96 Cent
67:46 Ais f5 5593 Hz +1,67 Cent
108:70 H fis5 5925 Hz +1,36 Cent

Sämtliche hier beschriebenen Abweichungen von der gleichstufigen Stimmung liegen unter zwei Cent, was allgemein als Wahrnehmungsgrenze für Verstimmungen angesehen wird. Somit stellt die verwendete Kombination aus Zahnradgetrieben und Tonrädern eine für die musikalische Praxis hinreichend genaue Näherung der gleichstufigen Stimmung dar.

Durch die starre mechanische Vorgabe der Frequenzen über die unterschiedliche Zahnzahl der Räder kann sich die Orgel in sich nicht verstimmen, jedoch schwankt die Tonhöhe des Instrumentes im Ganzen mit der Netzfrequenz. Eine Hammond-Orgel lässt sich somit in keiner Weise stimmen; alle anderen Instrumente haben sich nach ihr zu richten. (Abhilfe kann hier ein nachgerüsteter Frequenzumrichter schaffen, der in Spezialgeschäften erhältlich ist.)

Etwa um 1975 beendete Hammond die Produktion der Orgeln mit elektromechanischer Tonerzeugung und stellte auf Orgeln mit elektronischer Tonerzeugung um. Diese Orgeln konnten den typischen Klang der elektromechanischen Orgeln jedoch anfangs nicht erreichen, so dass sie von professionellen Musikern nicht richtig akzeptiert wurden.

Klangformung

Die nachfolgenden Betrachtungen gelten für das bekannteste Modell B3, andere Modelle weisen Unterschiede dazu auf, ohne dass sich das Grundprinzip ändert.

Zugriegel und Fußlagen

Zugriegel einer Hammondorgel

Ein Ton der Orgel setzt sich aus neun verschiedenen Frequenzen zusammen, deren Lautstärkepegel über die so genannten Zugriegel (engl. Drawbars) eingestellt werden können (siehe auch additive Synthese). Man bezeichnet diese Orgel daher auch als neunchörig. Jeder Zugriegel hat neun verschiedene Lautheitsstufen (von 0 bis 8). Daraus ergeben sich rechnerisch, da die Nullstellung aller Zugriegel keine klingende Kombination ergibt, 99-1=387.420.488 unterschiedliche Kombinationsmöglichkeiten.

Die Zugriegel sind aus ergonomischen Gründen so angeordnet, dass beim Spiel mit der rechten Hand auf dem Obermanual die Zugriegel links sitzen, weil sie mit der linken Hand bedient werden. Für das Untermanual sind die Zugriegel auf der rechten Seite angebracht.

Die Zugriegel werden nach ihrer Tonhöhe bezeichnet, ausgedrückt durch die sogenannte Fußlage. Diese Einteilung wurde von den Registern der Pfeifenorgel übernommen. Die Fußlagen sind (in der Einheit Fuß, ′): 16′, 51/3′, 8′, 4′, 22/3′, 2′, 13/5′, 11/3′, 1′. Sie entsprechen den folgenden Intervallen beziehungsweise Obertönen bezogen auf die Basis 8′ (Äquallage):

16′ eine Oktave tiefer (Unterton zu 8′)
51/3 eine Quinte höher (3. Harmonische zu 16′)
8′ Äquallage
4′ eine Oktave höher (2. Harmonische zu 8′)
22/3 eine Oktave und eine Quinte höher (3. Harmonische zu 8′)
2′ zwei Oktaven höher (4. Harmonische zu 8′)
13/5 zwei Oktaven und eine große Terz höher (5. Harmonische zu 8′)
11/3 zwei Oktaven und eine Quinte höher (6. Harmonische zu 8′)
1′ drei Oktaven höher (8. Harmonische zu 8′)

Man unterscheidet zwischen dem Grundton und seinen Oktaven (Fußlagen 8′, 4′, 2′, 1′; weiße Zugriegel), und den zwischen den Oktaven liegenden Obertönen (Fußlagen 22/3′, 13/5′, 11/3′; schwarze Zugriegel). Weiter gibt es Subtöne (Fußlagen 16′, 51/3′; braune Zugriegel). Die Subtöne gehören nicht zu den harmonischen Obertönen eines 8-Fuß-Registers.

In einer Pfeifenorgel sind alle Obertonregister stets rein, also mit Frequenzen, die ein ganzzahliges Vielfaches zur Grundtonfrequenz bilden, ausgeführt. Bei der Hammondorgel gilt dieses nur für die Oktavlagen (8′, 4′, 2′, 1′; bezogen auf 16′). Um die Quinten (51/3′, 22/3′, 11/3′) und die Terz (13/5′) derart zu bauen, wären für die Quinten Tonräder mit {6; 12; 24; …} Zähnen und für die Terz Tonräder mit {20; 40; 80; …} Zähnen erforderlich, die jedoch nicht vorhanden sind. Die Quinten und die Terz müssen aus den vorhandenen Tönen gewonnen werden, die aber näherungsweise gleichstufig gestimmt sind. Diese Art der Fußlagengewinnung stellt den Extremfall einer Multiplexorgel dar. Alle Fußlagen („Register“) werden aus einer einzigen Reihe Tonerzeuger gewonnen. Nachfolgende Tabelle stellt die Töne und deren Abweichungen von den rein gestimmten Obertönen für die Zugriegel 22/3′ (Quinte, 3. Teilton) und 13/5′ (Terz, 5. Teilton) dar:

8′-Ton (Grundton) 22/3′-Ton Abweichung 13/5′-Ton Abweichung
C g0 −1,9 Cent e1 +13,5 Cent
Cis gis0 −2,7 Cent f1 +13,0 Cent
D a0 −2,0 Cent fis1 +13,7 Cent
Dis ais0 −2,2 Cent g1 +13,7 Cent
E h0 −2,5 Cent gis1 +13,0 Cent
F c1 −2,5 Cent a1 +13,7 Cent
Fis cis1 −2,6 Cent ais1 +13,4 Cent
G d1 −1,8 Cent h1 +13,1 Cent
Gis dis1 −2,0 Cent c2 +13,1 Cent
A e1 −2,1 Cent cis2 +13,0 Cent
Ais f1 −2,6 Cent d2 +13,9 Cent
H fis1 −1,9 Cent dis2 +13,6 Cent

Hinweis: Da das Cent ein relatives Maß für den Abstand zweier Töne beziehungsweise Frequenzen ist, gelten die Werte der Abweichungen beim 22/3′ auch für die Zugriegel 51/3′ und 11/3.

Während die Abweichungen bei den Quinten noch im Bereich der Wahrnehmungsgrenze für Verstimmungen liegen, so sind die Abweichungen bei der Terz deutlich als Abweichungen zur rein gestimmten großen Terz (5. Teilton) wahrnehmbar, was Pfeifenorgelspieler als sehr störend empfinden können. Andererseits trägt diese eigenartige Art der Fußlagengewinnung zum typischen Klang der Orgel bei.

Als Notation von Registereinstellungen werden in Noten oder einschlägiger Fachliteratur die Positionen der einzelnen Register durch neun Ziffern dargestellt. So bedeutet die Darstellung 888888888 etwa, dass alle Register maximal gezogen sind. Bei 500008000 klingen nur die 16′- und 2′-Register. Oft werden die Ziffern auch nach dem Schema 2-4-3 gruppiert, so dass einige Organisten 88 8888 888 beziehungsweise 50 0008 000 für die oben genannten Beispiele notieren.

Harmonic Foldback

Die 91 Frequenzen des Generators reichen nicht aus, um alle Tasten mit den kompletten Obertönen zu versorgen. Dazu wären 121 Frequenzen (Kontra-C bis c8) notwendig, einige hohe Töne fehlen. Wenn man nun einen hohen Ton spielte, erklängen dessen höhere Obertöne nicht, weshalb er leiser und dünner klänge. Das sogenannte Harmonic Foldback wirkt diesem Effekt entgegen. Wenn ein Oberton außerhalb des Frequenzumfangs des Generators liegt, erklingt er eine Oktave tiefer. Das Harmonic Foldback wird ab dem Ton g5 erforderlich, da der höchste verfügbare Ton der Orgel fis5 ist. Dadurch ändert sich die Frequenzcharakteristik der hohen Töne maßgeblich. Das Harmonic Foldback ist der Grund, warum eine B3 in den hohen Lagen so schreit. Für das Harmonic Foldback ergibt sich folgende Situation:

Zugriegel Tastenbereich:Fußlage
16′ C-c4: 16′    
8′ C-c4: 8′    
51/3 C-c4: 51/3    
4′ C-c4: 4′    
22/3 C-h3: 22/3 c4: 51/3  
2′ C-fis3: 2′ g3-c4: 4′  
13/5 C-d3: 13/5 dis3-c4: 31/5  
11/3 C-h2: 11/3 c3-h3: 22/3 c4: 51/3
1′ C-fis2: 1′ g2-fis3: 2′ g3-c4: 4′

Funktional entspricht das Harmonic Foldback einer Oktavrepetition in einem Pfeifenorgelregister. Es gibt jedoch einen signifikanten Unterschied zur Pfeifenorgel. Repetiert bei einer Pfeifenorgel ein 2′-Register auf der Taste g3 in die 4′-Lage, so sind auch für die höchsten Tasten eigene Pfeifen vorhanden. Zusammen mit einem 4′-Register erklingen also 4′ + 2′ und ab der Taste g3 4′ + 4′, also zwei Töne gleichzeitig auf jeder Taste. Da bei der Hammond-Orgel keine Tonräder doppelt vorhanden sind, erklingen nur bis zur Taste fis3 zwei unterschiedliche Töne gleichzeitig, nämlich 4′ + 2′, ab der Taste g3 erklingt jedoch nur noch ein Ton, der 4′ - allerdings wird auch hier dieser eine Ton dann doppelt zur Verfügung gestellt, woraus sich in der Mischung (zumindest theoretisch) ein Lautstärkezuwachs ergibt. Besonders bei der Kombination 4′ + 2′ + 1′ wird der Ton in den hohen Lagen aber zunehmend dünner. Das Harmonic Foldback löst das Problem des in der Höhe dünner werdenden Klangs daher nicht vollständig.

Chorus und Vibrato

Ein Choruseffekt ist prinzipiell nichts anderes als eine Schwebung. Diese entsteht gewöhnlich dann, wenn zwei Töne mit ganz leicht unterschiedlichen Frequenzen erklingen. Um 1940 erreichte man das bei Hammond-Orgeln noch, indem man einen zweiten Tongenerator, den sogenannten Chorus-Generator, einbaute, der gegenüber dem Hauptgenerator ganz leicht verstimmt war. Die Frequenzen dieses zusätzlichen Generators wurden mit denen des Hauptgenerators überlagert, wodurch sich ein Choruseffekt ergab. Da die so ausgestatteten Orgeln übermäßig schwer waren, ging man später dazu über, ein sogenanntes Scanner-Vibrato einzubauen:

Die Vibrato-Einheit besteht aus einer analogen Verzögerungsleitung (oder Phasenschieberschaltung → hintereinandergeschaltete LC- und LRC-Filterschaltungen) mit 16 Ausgängen, an denen das von Stufe zu Stufe zunehmend verzögerte Tonsignal abgegriffen und dem Vibrato-Scanner zugeführt wird. Bei diesem handelt es sich um eine Art kontaktlosen Drehschalter (technisch ähnlich einem Drehkondensator mit 16 Statorpaketen und einem Rotorpaket).
Das an den Statorpaketen anliegende, jeweils unterschiedlich stark verzögerte Signal wird vom Rotor abgegriffen und weitergeleitet.

Die phasenverschobenen Signale sind mit auf- und absteigender Verzögerung (entsprechend dem Muster 1-2-3-4-5-6-7-8-7-6-5-4-3-2-1) auf die Statorpakete gelegt. Über den an die Motorachse gekoppelten umlaufenden Rotor wird somit ein periodisch unterschiedlich stark verzögertes Signal zur weiteren Verstärkung gegeben. Daraus resultiert zunächst eine Tonhöhenschwankung (Vibrato) des Orgeltons. Mischt man dieses Vibrato-Signal mit dem unveränderten Signal, was über den Effektstärke-Drehschalter geschieht, ergibt sich ein spezieller Chorus-Effekt, der von unzähligen Hammond-Aufnahmen bekannt ist.

Percussion

Das Percussion-Register ist nur auf dem Obermanual verfügbar, und auch nur auf einem der zwei Zugriegelsätze. Das Erklingen und schnelle Abklingen einer Fußlage ergibt den Percussion-Effekt. Die Percussion erklingt nicht bei jedem Tastendruck, sondern nur, wenn davor alle Tasten losgelassen wurden. Die Fußlagen 4′ und 22/3′ sind als Percussion-Register schaltbar, wobei eine kurze (etwa 200 Millisekunden) und eine lange (eine knappe Sekunde) Ausklingzeit gewählt werden kann. Zusätzlich ist die Lautstärke zwischen Normal und Soft schaltbar. Für die Steuerung der Percussion wird der 1′-Tastenkontakt verwendet, der 1′-Zugriegel ist bei eingeschalteter Percussion also stumm.

Effekte

Hammond-Orgel, Leslie-Effekt Slow-Fast-Slow
Hammond-Orgel, verschiedene Sequenzen mit Leslie-Effekten

Hammond-Orgeln wurden vielfach mit einem Federhall ausgestattet, um dem Klang mehr Räumlichkeit zu verleihen. Zudem ist der Klang der Hammond für viele untrennbar mit dem Leslie verbunden. Dieses sogenannte Motion Sound System beruht auf dem Klang rotierender Lautsprecher (Dopplereffekt), der das bekannte Jammern des Klanges verursacht. Kurioserweise wurden Hammond-Orgeln nicht ab Werk mit einem Leslie-Anschluss ausgestattet, da Laurens Hammond den Klang des Leslies nicht mochte. Dieser musste vielmehr mit einem Leslie Connector Kit nachgerüstet werden. Allerdings wurden ab 1967 verkleinerte Leslie-Lautsprecher in die T- und M-Modelle eingebaut[4].

Im Hardrock war und ist es üblich, Hammond-Orgeln über Gitarrenverstärker zu verstärken. Modelle der Firma Marshall sind beliebt und verbreitet. Jon Lord prägte in den 70er-Jahren diesen Klangstil.

Weitere Effekte, die zur Klangveränderung eingesetzt werden, sind Phaser, Ringmodulator und Flanger.

Presets

Presets an einer B3, invertiert-kolorierte Oktave an beiden Manualen

Ergänzend zu den Zugriegeln bieten einige Modelle so genannte Presets an, mit denen vom Hersteller definierte Registrierungen per Tastendruck abgerufen werden können. Größere Orgeln wie die B3 bieten auf beiden Manualen eine ganze Oktave an invertiert-kolorierten Tasten an, mit denen die Presets angewählt werden können. Es kann jeweils nur ein Preset zu einem Zeitpunkt angewählt sein, die Taste arretiert dann in der gedrückten Position. Die Zugriegel verstellen sich dabei nicht automatisch, da es an einer Motorisierung fehlt, die Presets sind vielmehr intern verdrahtet.

Andere Modelle bieten Kippschalter als Presets an. Dazu gehören die M-100 und die L-100 Serie von Hammond.

Modelltypen

Man unterscheidet prinzipiell zwei Typen von Hammond-Orgeln:

Konsolenmodelle: Diese besitzen zwei Manuale mit je 61 Tasten (C–c4) und ein 25-töniges (C–c1) oder 32-töniges (C–g1) Basspedal (Vollpedal). Weiterhin sind vier neunchörige Zugriegelsätze (zwei pro Manual) und neun Presets pro Manual vorhanden. (Die farblich invertierten Tasten am linken Manualende sind Schalter, über die die Presets und Zugriegelsätze ausgewählt werden). Das Basspedal besitzt zwei Zugriegel (16′ und 8′). Konsolenmodelle waren für den Konzert- und Kirchenmusikbereich bestimmt. Zu ihnen zählt man die technisch ähnlichen Modellreihen A100, B3 und C3 sowie RT3, D100, E100 und H100 (Liste unvollständig).

Spinettmodell TR-200

Spinettmodelle:

Sie besitzen üblicherweise zwei Manuale mit je 44 Tasten (F–c3), einen Zugriegelsatz pro Manual, keine oder wenige Presets und ein zwölftöniges (C–H) oder dreizehntöniges (C–c) Stummelpedal. Das Untermanual ist nur sieben- oder achtchörig, die subharmonischen Register (16′ und 51/3′) fehlen. Spinettmodelle waren für den Heimbereich konzipiert. Wichtigste Vertreter sind die Baureihen L100, M3, M100 und T100.

Die Konsolenmodelle besitzen zudem das „Harmonic Foldback“, was bei den Spinettmodellen nicht zu finden ist. Daraus resultieren in jedem Fall grundsätzliche klangliche Unterschiede zwischen beiden Modelltypen.

Die wichtigsten Modelle

Helge Schneider hinter einer B3. Deutlich wird die Tiefe des Instruments.
  • A100 (1959–1965), B3 und C3 (1955–1974): Der Inbegriff der Hammond-Orgel. Tonerzeugung und Klangformung sind bei diesen Modellen identisch. Der Tongenerator erzeugt 91 Frequenzen. Alle besitzen zwei Manuale à 61 Tasten, links davon elf weitere, invers kolorierte Tasten für neun auf einem Klemmenbrett fest verdrahtete Presets und zwei Zugriegelsätze pro Manual, ein 25-töniges Basspedal, Percussion, Scanner-Vibrato und Hall. Die A100 war für den Heimbereich bestimmt, es sind im Unterschied zur B3 und C3 zusätzlich ein Federhallsystem, zwei Leistungsverstärker (Hauptverstärker mit 15 Watt und Hallverstärker mit 12 Watt Ausgangsleistung) und drei Lautsprecher (2 mal 12" für den Haupt- und ein 12"-Lautsprecher für den Hallverstärker) eingebaut. Die B3 ist das Konzertmodell und die C3 das Kirchenmodell. Sie unterscheiden sich lediglich in der Gehäuseausführung und sind technisch identisch.
  • M3 (1955–1964): Die auch „Baby-B3“ genannte M3 ist ein Spinettmodell mit zwei Manualen à 44 Tasten und einem 12-tönigen Basspedal. Der Generator erzeugt 86 Frequenzen. Sie besitzt neun Zugriegel für das Obermanual, acht für das Untermanual und einen Basszugriegel (16′), außerdem Percussion und Scannervibrato. Eine Besonderheit ist der achte Zugriegel für das Untermanual, der die Terz über dem 1′-Register, also ein 4/5′-Register erklingen lässt. Die M3 besitzt keinerlei Presets, aber einen eingebauten 12-Watt-Verstärker und einen Lautsprecher.
  • M100 (1961–1968): Diese stellt eine Weiterentwicklung der M3 dar. Sie besitzt zusätzlich noch Presets, Hall, einige Zusatzschalter für die Choruseffekte und ein 13-töniges Basspedal. Der eingebaute Verstärker steuert zwei Lautsprecher an, und es existiert ein dritter Lautsprecher für die Halleffekte. Trotzdem ist die M3 für viele Organisten das bessere Instrument, da die M100 keine sogenannte Waterfall-Tastatur wie die B3 besitzt. Ein bekanntes Beispiel für die Verwendung der M100 ist der Hit „A Whiter Shade of Pale“ von Procol Harum.
  • L100 (1961–1972): Die von Keith Emerson verwendete Orgel. Die L100 war das „Billig-Spinett“ von Hammond. Sie ist technisch ähnlich zur M100, besitzt aber im Gegensatz zu dieser kein Scannervibrato und nur sieben Zugriegel für das Untermanual. Eine Variante ist die P100, eine L100 in einem transportablen (zweiteiligen) Gehäuse. Die P100 ist die einzige transportable elektromechanische Hammond-Orgel, die jemals von Hammond gebaut wurde.
  • T200: zwei Manuale mit je 3½ Oktaven, keine (invertierten) Preset-Tasten, 13töniges Basspedal. Im Unterbau des Gehäuses ist ein mechanisches Leslie eingebaut. Das Modell ohne Leslie hieß T100[5].

Hammond-Orgel heute

Jimmy Smith gilt als der Erneuerer des Orgelspiels im Jazz

Nachfolger und Eigentümer des Namens Hammond ist eine japanische Firma namens Suzuki (nicht zu verwechseln mit dem gleichnamigen Motorradhersteller), die unter dem Firmennamen Hammond-Suzuki moderne Orgeln der Marke Hammond im alten Stil und Klang vermarktet. Bei diesen wird der Klang des Tongenerators mittels digitaler Technik simuliert. Der deutsche Distributor in Setzingen bei Ulm unterhält jedoch gleichzeitig eine Fachwerkstatt für die Instandsetzung der alten Modelle; im großen Verkaufsraum befinden sich auch Original-Hammond-Orgeln.

Auch einige Fremdhersteller bieten Keyboards und Soundmodule mit dem Hammond-Klang an, darunter die Firmen Clavia (mit den Modellen Nord C1, Nord Electro und Nord Stage), KORG, Roland, Oberheim und Kurzweil, die teilweise eine beachtliche Authentizität des Klanges erreichen.

Daneben gibt es unterdessen Computerprogramme, die den Klang und teilweise auch – etwa mittels spezieller Zugriegel-Adapter – die Spielbarkeit von Hammond-Orgeln nachzuahmen versuchen; zu den bekanntesten zählt die Software B4 der Firma Native Instruments.

Hammond-Suzuki selbst setzt einen gewissen Schwerpunkt auf Sakralorgeln (Modell 935, A-405 und 920). Daneben werden Baureihen mit Heimorgeln (Holzgehäuse mit Hufeisentisch), die kleine, mobile und modular erweiterbare XK-Serie und als Volumenmodell die optisch und akustisch auf der B3 beruhende "B3 MK 2" angeboten. Alle Modelle beruhen auf der digitalen Nachbildung des Tonrad-Generatorklangs.

Probleme der Klangsynthese

Hammond-Orgel

Trotz der modernen Digitaltechnik gelang und gelingt es nur schwer, den Klang einer alten, elektromechanischen Hammond-Orgel elektronisch (also „künstlich“) zu erzeugen beziehungsweise zu reproduzieren. Aus diesem Grund erfreuen sich die alten elektromechanischen Orgeln nach wie vor großer Beliebtheit. Die Gründe für die Unnachahmbarkeit beziehungsweise schwere Nachahmbarkeit des Klanges der elektromechanischen Tonerzeugung sind im Wesentlichen folgende:

  1. Die alte Hammondorgel besaß pro Taste neun elektrische Schaltkontakte, mit denen die neun verschiedenen gleichzeitig möglichen Töne (Fußlagen) pro Taste zu den Zugriegeln weitergeleitet wurden. Diese neun Kontakte schlossen, da sie eben mechanisch konstruiert waren, beim Drücken einer Taste nicht hundertprozentig gleichzeitig. Vielmehr war es so, dass bei sehr langsamem Herunterdrücken einer Taste die neun Töne deutlich hörbar einer nach dem anderen einsetzten. Dadurch entstand eine Art Anschlagsdynamik: Wurde die Taste langsam heruntergedrückt, baute sich der Ton aus den maximal neun Einzeltönen langsam und „weich“ auf. Wurde die Taste hingegen schnell heruntergedrückt, ertönten alle neun Töne annähernd gleichzeitig, so dass der Ton „härter“ einsetzte.
  2. Die Tastenkontakte erzeugen beim Einschalten eines Tones fast immer ein leichtes Knack- oder Klickgeräusch. (Exkurs: Das liegt daran, dass der am Kontakt anliegende sinusförmige Ton beim Drücken der Taste nicht im Nulldurchgang, sondern in irgendeiner Phasenlage „getroffen“ und auf den Verstärker weitergeleitet wird. Durch den Anschnitt der Phase entsteht ein impulsartiges, breitbandiges Signal, das vom menschlichen Ohr als knackendes Geräusch wahrgenommen wird.) Durch die annähernd zeitgleiche Betätigung von neun Kontakten beim Herunterdrücken einer Taste wird also eine Kaskade von neun Knackgeräuschen erzeugt. Diese neun Knackgeräusche ergeben, je nachdem wie schnell eine Taste heruntergedrückt wird, insgesamt ein schmatzendes Klickgeräusch, den typischen „Hammond-Click“.
  3. Die einzelnen Zahnräder (Tonräder) im Tongenerator drehten sich zwar mit definierten Geschwindigkeiten, die Phasenlage der von ihnen produzierten Sinustöne stand jedoch nicht in einem festen Verhältnis zueinander. Vielmehr hatte jeder Ton eine völlig beliebige Phasenlage im Verhältnis zu anderen Tönen. Durch die bewegliche Lagerung der Zahnräder auf den Wellen und durch thermische Einflüsse änderte sich darüber hinaus die Phasenlage praktisch ständig. Dieses führte zu einem natürlich wirkenden, „lebendigen“ Klangbild. Bei elektronischer Tonerzeugung hingegen werden in der Regel sämtliche Töne durch Teilung aus einer einzigen hohen Frequenz erzeugt. Alle Töne sind dadurch untereinander phasenstarr. Dieses führt zu einem deutlich statischeren (=künstlicheren) Klangeindruck.
  4. Jedes einzelne Tonrad lieferte (in Verbindung mit einigen passiven Bauelementen) bereits einen sinusförmigen Ton. Durch Zugriegel und Tastenkontakte wurden die sinusförmigen einzelnen Töne anschließend zusammengemischt. Diese Art der Tonerzeugung und Zusammenführung kann als „Einzeltonfilter“ bezeichnet werden. In Orgeln mit elektronischer Tonerzeugung hingegen ist der einzelne Ton zunächst rechteckförmig oder sägezahnförmig. Aus Gründen der Kostenersparnis erfolgt die Filterung („Umwandlung“) in ein sinusförmiges Signal dann nicht einzeltonweise, sondern es wird pro Quint oder gar pro Oktave nur ein Filter verwendet („Gruppenfilter“). Im Ergebnis werden also die sägezahn- oder rechteckförmigen einzelnen Töne erst zusammengeführt, und dann anschließend gefiltert (das heißt also: von Obertönen befreit und zu einem sinusförmigen Signal umgewandelt). Durch das Mischen der ungefilterten Rechteck- oder Sägezahnschwingungen kann es zu Intermodulationsverzerrungen kommen. Bei elektronischen Hammond-Orgeln aus der Zeit ab 1975 (und auch bei vielen anderen elektronischen Musikinstrumenten) sind diese Verzerrungen sofort hörbar, wenn mehr als 10 bis 20 Tasten auf einmal gedrückt werden: Es entstehen keine sauberen Töne mehr, sondern stark verzerrte bis krachende Geräusche. Die alte Hammondorgel hingegen war völlig frei von (hörbaren) Intermodulationsverzerrungen.
  5. Die einzelnen Tonräder liefen nicht immer völlig rund, vielmehr hatten sie, auch abhängig vom Alter und Zustand der Orgel, ganz leichten Seitenschlag oder Höhenschlag, teilweise trudelten sie auch auf den Antriebswellen. Die dadurch entstehenden, in der Regel sinusförmigen Amplituden- und eventuell sogar Frequenzschwankungen beeinflussten beziehungsweise überlagerten den vom Tonrad erzeugten eigentlichen Sinuston. Für das menschliche Ohr ist diese „Unsauberkeit“ des einzelnen Tones normalerweise nicht wahrnehmbar. In der Summe der erzeugten Töne tragen gerade diese Unreinheiten der Einzeltöne jedoch ebenfalls zum Entstehen des besonderen, lebendig erscheinenden Klangbildes bei.
  6. Ein nicht unerheblicher Bestandteil des originalen Hammond-Klanges ist beziehungsweise war auch das sogenannte „Leakage noise“. Damit ist das Übersprechen benachbarter Tonräder in den Tonabnehmer des gerade benutzten Tonrades gemeint. Drückt man als Beispiel eine beliebige Taste auf der Hammondorgel nur mit dem gezogenen 8′-Zugriegel (so kann man es am besten hören), so hört man (je nach Zustand und Alter der betreffenden Orgel) nicht nur den eigentlichen Sinuston der 8′-Lage, sondern auch ganz leise die Töne anderer Fußlagen, was demnach auch zu leicht dissonanten Klängen einzelner Fußlagen führen kann. Dieses „Leakage noise“-Phänomen tritt sehr oft bei Hammond-Orgeln auf, die vor dem Jahre 1964 gebaut wurden. Der Grund dafür ist, dass in diesen Jahren noch die alten Wachspapier-Kondensatoren für den Tongenerator und die Vibrato-Line-Box verwendet wurden. Im Laufe der Jahre vervielfacht sich der Wert der Kondensatoren durch Feuchtigkeit, führt somit zu immer unreinerem Klang und kann auch zu einem abgehackten Scanner-Vibrato-Sound führen. Ab etwa 1964 wurden dann sogenannte „Red caps“ in die Orgeln eingebaut, deren Dielektrikum aus Polypropylen oder ähnlichem bestand und die den Wert auch über Jahrzehnte stabiler halten konnten als ihre Wachs-Papier-Vorgänger. Folglich verfügt eine Hammond aus dem Jahre 1965 und danach über deutlich weniger „leakage noise“ als ein Instrument von 1963. Auf den heutigen Hammond-Kopien kann dieses zum Teil auch schon simuliert werden; dort gibt es Regler wie „condition“ oder eben „leakage“, mit denen man das Alter und dementsprechend den Klang simulieren kann. Jedoch ist auch diese Detail-Funktion immer noch nicht befriedigend, da bei den alten Originalen nicht jede Fußlage gleich davon betroffen war und somit der Klang viel variabler und zufälliger erschien als dieses bei den heutigen Nachbauten der Fall ist.

Hammond-Orgel-Musik

Musiker, bei denen die Hammondorgel stilprägend war oder ist:

Weblinks

 Commons: Hammond-Orgel – Sammlung von Bildern, Videos und Audiodateien
Wiktionary Wiktionary: Hammondorgel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Quellennachweise

  1. Patent US1956350: Electrical Musical Instrument.
  2. http://www.youtube.com/watch?v=tegMlgIgNHk Einschalten der Hammond
  3. http://www.sl-prokeys.com/prokeys/power.htm
  4. http://www.hammond.at/geschichte-musik.html 1967
  5. http://www.orgelsurium.ch/htm/hammond.htm
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 27. Februar 2006 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hammond-Orgel —   [englisch, hæmənd ], elektromechanisches Tasteninstrument; erste kommerziell erfolgreiche E Orgel. Die ursprüngliche Version dieses Instruments wurde 1933/34 von dem amerikanischen Ingenieur Laurens Hammond (1895 1973) in Zusammenarbeit mit… …   Universal-Lexikon

  • Hammond International Company — Hammond Orgel Klassifikation Elektrophon Tasteninstrument Tonumfang C1 fis5 Verwandte Instrumente Orgel Klangbeispiel …   Deutsch Wikipedia

  • Orgel — engl.: organ, ital.: organo …   Deutsch Wikipedia

  • Hammond (Familienname) — Hammond ist ein Familienname. Bekannte Namensträger Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z …   Deutsch Wikipedia

  • Hammond — steht für: Hammond (Automarke), eine ehemalige britische Automarke Hammond (Familienname), der Familienname Hammond Hammond ist der Name folgender Orte in den Vereinigten Staaten: Hammond (Illinois) Hammond (Indiana) Hammond (Louisiana) Hammond… …   Deutsch Wikipedia

  • Orgel-Glossar — Es folgt eine Liste von Begriffen rund um die Orgel, den Orgelbau und die Orgelmusik. Registerbezeichnungen sowie allgemeine Begriffe der Akustik sind hier nicht zu finden. Dafür siehe Liste von Orgelregistern. Fremdsprachliche Begriffe, die aber …   Deutsch Wikipedia

  • Hammond — I Hammond   [ hæmənd], Industriestadt in Indiana, USA, am Michigansee südlich von Chicago, 84 200 Einwohner; Stahlindustrie, Maschinenbau, Erdölraffinerien. II …   Universal-Lexikon

  • E-Orgel — Als elektronische Orgel wird allgemein ein Tasteninstrument mit elektronischer Tonerzeugung bezeichnet. Konkrete analoge oder digitale Technologie der Klangerzeugung, Designausführung oder Baugröße kann daran nicht festgemacht werden und ist… …   Deutsch Wikipedia

  • Elektronische Orgel — Als elektronische Orgel wird allgemein ein Tasteninstrument mit elektronischer Tonerzeugung bezeichnet. Eine konkrete analoge oder digitale Technologie der Klangerzeugung, Designausführung oder Baugröße kann an dem Begriff nicht festgemacht… …   Deutsch Wikipedia

  • E-Orgel, Elektronenorgel — E Orgel, Elektronenorgel:   im engeren Sinn umfasst der Begriff alle elektronischen Tasteninstrumente, die in ihrem Klang und in der Bauweise ihrer Spielvorrichtung Ähnlichkeit zur historischen Pfeifenorgel (Orgel) besitzen; im weiteren Sinn… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”