Grössenwert

Grössenwert
Messschieber zur Messung der Länge, Maßeinheit: Millimeter
Waage zur Messung der Gewichtskraft und damit, praktisch gesehen, der Masse, Maßeinheit: Kilogramm
Stoppuhr zur Messung der Zeit, Maßeinheit: Sekunde

Eine physikalische Größe ist eine quantitativ bestimmbare Eigenschaft eines physikalischen Objektes. Sie ist entweder direkt messbar (Messgröße) oder kann aus anderen Messgrößen berechnet werden (abgeleitete Größe). Den Zusammenhang zwischen physikalischen Größen vermitteln physikalische Gesetze. Die Objekte selbst – z. B. Gegenstände, Vorgänge oder Zustände – wie auch nicht quantifizierbare Merkmale – z. B. Aussehen oder Geschmack – sind keine physikalischen Größen.

Unterscheidungsmerkmal zwischen gleichartigen physikalischen Größen ist ihr Größenwert oder Messwert, der als Produkt aus Zahlenwert (auch Maßzahl genannt) und Maßeinheit angegeben wird. Die mathematische Darstellung der Naturgesetze geschieht in Form von Größengleichungen unabhängig von Einheiten. Unabhängige Größen bilden zusammen mit allen aus ihnen ableitbaren Größen ein Größensystem.


Inhaltsverzeichnis

Grundlagen

Ein Vergleich von zwei Dingen erfordert stets ein Kriterium, anhand dessen der Vergleich stattfindet (tertium comparationis). Dies muss ein Merkmal (oder Eigenschaft) sein, das beiden Dingen zu eigen ist. Als physikalische Größe bezeichnet man ein Merkmal dann, wenn dieses einen Wert besitzt, so dass das Verhältnis zweier Merkmalswerte ein reeller Zahlenfaktor ist [1]. Ein Vergleich anhand einer Größe ist somit quantifizierbar. Den Vergleichsvorgang zur Bestimmung des Zahlenfaktors bezeichnet man als Messung. Die Messbarkeit eines Merkmals, d. h. die Angabe einer eindeutigen und reproduzierbaren Messvorschrift für einen Vergleich, ist gleichwertig mit der Definition einer physikalischen Größe.

Alle Merkmale eines Objektes fallen in zwei Klassen, physikalische Größen und alle übrigen. Wie es der Name vermuten lässt, beschäftigt sich die Physik ausschließlich mit der erstgenannten Klasse. Die Physik stellt allgemeine Zusammenhänge zwischen Größenwerten auf, also Zusammenhänge, die für alle Träger dieser Größe gelten. Als Träger bezeichnet man hierbei alle Objekte, die die betrachtete Größe als Merkmal besitzen. Physikalische Zusammenhänge sind somit unabhängig von der konkreten Beschaffenheit eines Trägers.

Die folgenden Abschnitte gehen auf einzelne Begriffe ein, die im Zusammenhang mit Größen verwendet werden.

Größenart

Strommesser zur Messung der Stromstärke, Maßeinheit: Ampere
Thermometer zur Messung der Temperatur, Maßeinheit: Grad Celsius

Wenn das Verhältnis von zwei Größenwerten verschiedener Größen eine reelle Zahl ist, so bezeichnet man diese Größen als gleichartig. Die Größenart ist der Oberbegriff für alle Größen, für die das möglich ist.

Die Größenart erweitert die Grenze der Vergleichbarkeit. An die Stelle der Größe als Vergleichskriterium tritt die Größenart. Zwei Objekte können also auch über zwei verschiedene Merkmale miteinander verglichen werden, sofern diese gleichartig sind. Außerdem kann ein Objekt anhand zweier gleichartiger Größen mit sich selbst verglichen werden.

Beispielsweise sind Breite, Höhe und Länge eines Quaders, Durchmesser eines Rohrs, Spannweite eines Vogels, Niederschlagshöhe, Wellenlänge usw. alles Größen der Größenart „Länge“. Sie können alle mit der Länge eines Zollstocks verglichen werden.

Größenwert

Jede physikalische Größe hat einen Größenwert. Das Verhältnis von zwei Größenwerten gleichartiger Größen ist eine reelle Zahl. Dies ist seine definierende Eigenschaft. Man bezeichnet einen Unterschied um den Faktor 10 als eine GrößenordnungN Größenordnungen entsprechen einem Faktor von 10N. Für sich alleinstehend ist ein Größenwert nicht weiter definiert, insbesondere ist er keine Zahl. Auch das Verhältnis von Werten nicht gleichartiger Größen ist keine reelle Zahl.

In der Natur existieren eine Reihe von Größen, deren Größenwert unveränderlich feststeht. Diese nennt man Natur-, Universal- oder einfach physikalische Konstanten (Beispiele: Vakuum-Lichtgeschwindigkeit, plancksches Wirkungsquantum).

Zahlenwert und Einheit

Es ist zweckmäßig, das Verhältnis eines Größenwerts zu dem Wert einer gleichartigen, feststehenden und wohldefinierten Vergleichsgröße zu ermitteln. Den Vergleichsgrößenwert bezeichnet man als Maßeinheit oder kurz Einheit, das gemessene Verhältnis als Maßzahl oder schlicht Zahlenwert. Der Größenwert kann dann als Produkt aus Zahlenwert und Einheit dargestellt werden (siehe auch Abschnitt Schreibweise).

Die Definition einer Einheit unterliegt der menschlichen Willkür. Eine Möglichkeit besteht in der Wahl eines bestimmten Objekts – eines so genannten Normals – als Träger der Größe, dessen Größenwert als Einheit dient. Eine andere Möglichkeit ist einen berechneten Größenwert zu nehmen, wofür allerdings ein geeigneter physikalischer Zusammenhang zu anderen Größenwerten bekannt sein muss (siehe auch Abschnitt Größengleichungen). Eine dritte Möglichkeit ist den Wert einer physikalischen Konstanten als Einheit zu verwenden, sofern eine solche für die gewünschte Größe existiert.

Theoretisch ist es ausreichend, eine einzige Einheit für eine Größenart zu definieren. Historisch bedingt haben sich aber häufig eine Vielzahl verschiedener Einheiten für die gleiche Größenart gebildet. Diese unterscheiden sich wie alle gleichartigen Größenwerte lediglich um einen reinen Zahlenfaktor [2].

Skalare, Vektoren und höherstufige Tensoren

Größen verschiedener Stufen.
Skalar Masse, Temperatur
Pseudoskalar Helizität
Vektor Kraft
Pseudovektor Drehmoment
Tensor 2-ter Stufe Trägheitstensor
Tensor 4-ter Stufe Elastizitätstensor

Bestimmte physikalischen Größen besitzen eine Orientierung im physikalischen Raum, so dass ihr gemessener Größenwert von der Messrichtung abhängt. Beispielsweise ist die Geschwindigkeit eines Autos typischerweise entlang einer Straße gerichtet, die gemessene Geschwindigkeit senkrecht zu dieser ist Null. Allgemein lässt sich der Bezug jeder physikalischen Größen zum Raum als Tensor darstellen. Man unterscheidet dabei:

  • Tensoren 0-ter Stufe oder Skalare. Dies sind alle Größen, die keine Richtungsabhängigkeit aufweisen, d. h. einzig durch ihren Größenwert bestimmt sind.
  • Tensoren 1-ter Stufe oder Vektoren. Dies sind alle Größen, die durch ihren Größenwert und eine Richtung vollständig bestimmt sind.
  • Tensoren 2-ter Stufe. Dies sind Größen, die durch ihren Größenwert und zwei Richtungen bestimmt sind. Man kann sich das anschaulich durch das Ursache-Vermittlung-Wirkung Prinzip vorstellen, etwa wenn eine Ursache in eine Richtung eine Wirkung in eine andere zeigt; die vermittelnde Größe ist dann ein Tensor 2-ter Stufe.
  • Tensoren n-ter Stufe. Größen, die durch ihren Größenwert und n Richtungen bestimmt sind.

Der Tensorcharakter einer Größe wird von ihrem Größenwert getrennt. Vektoren beispielsweise lassen sich mathematisch darstellen als Produkt aus Größenwert und Richtungsvektor mit Betrag eins. Eine physikalische Größe ist invariant unter Koordinatentransformationen. So wie ihr Größenwert unabhängig von der Einheit ist, so ist ihre Richtung unabhängig von der Wahl des Koordinationsystems.

Bei bestimmten Größen ändert sich unter Raumspiegelungen das Vorzeichen, derartige Größen bezeichnet man als Pseudotensoren: Bei Pseudoskalaren ändert der Größenwert sein Vorzeichen, bei Pseudovektoren dreht sich die Richtung um, usw.. Davon abgesehen verhalten sich Pseudotensoren und Tensoren identisch.

Schreibweise

Die folgenden Erläuterungen orientieren sich an den nationalen und internationalen Regelungen von Normungsorganisationen und Fachgesellschaften (z. B. DIN 1338, ISO 31/XI, Empfehlungen der International Union of Pure and Applied Physics (IUPAP)).

Formel- und Einheitenzeichen

Einer physikalischen Größe wird in mathematischen Gleichungen ein Schriftzeichen zugeordnet, das man Formelzeichen nennt. Dieses ist grundsätzlich willkürlich, jedoch existieren eine Reihe von Konventionen (z. B. DIN 1304, ÖNORM A 6438, ÖNORM A 6401, etc.) zur Bezeichnung bestimmter Größen. Häufig wird als Formelzeichen der Anfangsbuchstabe des lateinischen Namens einer Größe genommen. Auch Buchstaben aus dem griechischen Alphabet werden oft verwendet. Üblicherweise besteht ein Formelzeichen nur aus einem einzigen Buchstaben, der zur weiteren Unterscheidung mit einem Index versehen werden kann (in selteneren Fällen auch mit anderen Markierungen wie einer über dem Symbol verlaufenden Tilde oder mit einem hochgestellten Symbol, wobei letztere Schreibweise wegen der Verwechslungsgefahr mit der Potenzierung der Größe vermieden werden sollte).

Auch für Einheiten gibt es standardisierte Schriftzeichen, die Einheitenzeichen genannt werden. Sie bestehen meistens aus einem oder mehreren lateinischen Buchstaben oder seltener aus einem Sonderzeichen wie z. B. einem Gradzeichen. Bei Einheiten, die nach Personen benannt sind, wird der erste Buchstabe des Einheitenzeichens üblicherweise groß geschrieben.


  \begin{align}
            U          &= 20 \, \mathrm{V}\\
    \left\{ U \right\} &= 20              \\
    \left[  U \right]  &=       \mathrm{V}
  \end{align}
Angabe einer Spannung von 20 Volt: vollständig; nur Zahlenwert; nur Einheit.

Die Angabe des Größenwerts erfolgt immer als Produkt aus Zahlenwert und Einheit. Will man nur den Zahlenwert angeben, so setzt man das Formelzeichen in geschweifte Klammern. Will man nur die Einheit angeben, so setzt man das Formelzeichen in eckige Klammern. Formal lässt sich ein Größenwert also wie folgt schreiben:


G=\left\{G\right\}\;\left[G\right]

Da der Zahlenwert von der gewählten Maßeinheit abhängt, ist die alleinige Darstellung des Formelzeichens in geschweiften Klammern nicht eindeutig. Deshalb ist für die Beschriftung von Tabellen und Koordinatenachsen die Darstellung „G/[G]“ (z. B. „m/kg“) oder „G in [G]“ (z. B. „m in kg“) üblich. Die manchmal zu findende Darstellung von Einheiten in eckigen Klammern („G [[G]]“, z. B. „m [kg]“)) ist hingegen nicht korrekt. (Zur Kursiv- und Aufrechtschreibung s. nachfolgenden Teil. Zur Verwendung von Einheiten und Zahlenwerten s. auch den Abschnitt Zahlenwertgleichungen weiter unten.)

Formatierung

Die Formatierung ist durch DIN 1338 geregelt. Demnach wird das Formelzeichen kursiv geschrieben, während das Einheitenzeichen mit aufrechter Schrift geschrieben wird, um es von Formelzeichen zu unterscheiden. Beispielsweise bezeichnet „m“ das Formelzeichen für die Größe „Masse“ und „m“ das Einheitenzeichen für die Maßeinheit „Meter“.

Zwischen der Maßzahl und dem Einheitenzeichen wird ein Leerzeichen geschrieben. Eine Ausnahme von dieser Regel stellen die Gradzeichen dar, die ohne Zwischenraum direkt hinter die Maßzahl geschrieben werden („ein Winkel von 180°“), sofern keine weiteren Einheitenzeichen folgen („die Außentemperatur beträgt 23 °C“). Im Schriftsatz empfiehlt sich hierfür ein schmales Leerzeichen, das zusätzlich vor einem Zeilenumbruch geschützt werden sollte, damit Zahlenwert und Einheit nicht getrennt werden.

Formelzeichen für Vektoren werden meistens durch Fettdruck gekennzeichnet: \boldsymbol{a}; üblich ist auch die Verwendung von Vektorpfeilen über oder seltener Strichen unter dem Formelzeichen: \vec{a}, \underline{a}. Für Tensoren höherer Stufen werden Großbuchstaben in serifenloser Schrift, manchmal auch Frakturbuchstaben oder eine doppelte Unterstreichung verwendet: \mathsf{A}, \mathfrak{A}, \underline{\underline{A}}. Welche Schreibweise verwendet wird, hängt häufig auch davon ab, ob von Hand oder maschinell geschrieben wird, da sich Merkmale wie Fettdruck oder Serifen mit einer Handschrift in der Regel nicht zuverlässig wiedergeben lassen.

Es gibt wegen unterschiedlicher länder- und fachspezifischer Traditionen zum Formelsatz zahlreiche Besonderheiten zur Aufrecht- und Kursivschreibung, z. B. bei großen und kleinen griechischen Buchstaben als Formelzeichen, Naturkonstanten wie der Lichtgeschwindigkeit, mathematischen Konstanten wie der eulerschen Zahl oder der imaginären Einheit, aber auch dem (totalen) Differentialoperator. Diese werden im Artikel Formelsatz näher erläutert. Eine gute Grundmerkregel ist: „Alles was variabel, veränderlich ist, wird kursiv gesetzt; Unveränderliches, Konstantes oder Erläuterndes hingegen aufrecht.“ Formelzeichen sowie veränderliche Indizes erscheinen also kursiv, während Einheitenzeichen und erläuternde Angaben im Index aufrecht gedruckt werden:

„Die Gesamtmasse des Autos von 1000 kg setzt sich aus der Masse des Fahrgestells und der Summe von n weiteren Gegenständen zusammen“: m_\text{ges} = 1000 \, \mathrm{kg} = m_\text{Fahrgestell} + \sum_{i=1}^{n} m_i

Fehlerbehaftete Größen

l = (10{,}0072 \pm 0,0023) \, \mathrm{m}
l =  10{,}0072(23)         \, \mathrm{m}

l = {10{,}00\mathbf{7}}    \, \mathrm{m}
Angabe einer fehlerbehafteten Messgröße

Bei fehlerbehafteten Größenwerten wird der Zahlenwert mit seiner Messunsicherheit angegeben, meistens in Form des mittleren Fehlers oder manchmal – falls bekannt – des Maximalfehlers. Das Kenntlichmachen geschieht meistens durch ein „±“ nach dem fehlerbehafteten Zahlenwert, gefolgt von dem Fehlerwert (wobei Klammern erforderlich sind, sofern eine Einheit folgt, damit diese sich auf beide Werte bezieht). Aber auch Kurzformen wie eine geklammerte Fehlerangabe oder Fettdruck der unsicheren Ziffer des Zahlenwerts sind üblich.

Die Anzahl der anzugebenden unsicheren Dezimalstellen des Zahlenwerts richtet sich nach dem Fehlerwert. Beginnt dieser mit einer 1 oder 2, so werden zwei Stellen notiert, ansonsten nur eine. Gegebenenfalls ist der Zahlenwert wie üblich zu runden; der Fehler wird hingegen immer aufgerundet.

Beispiele zur Kennzeichnung von Zusatzinformationen

Zusätzliche Bezeichnungen oder Informationen dürfen grundsätzlich nicht im Größenwert einer physikalischer Größe (also weder in der Einheit noch beim Zahlenwert) auftauchen bzw. diesem hinzugefügt werden, da dies unsinnig wäre; sie dürfen nur in der Benennung oder Bezeichnung der physikalischen Größe, also im Formelzeichen, zum Ausdruck gebracht werden.

Z. B. kann man das allgemein verwendete Formelzeichen f für die Frequenz in korrekter Notation mit einem U als Subskript ergänzen, um darauf hinzuweisen, dass eine Umdrehungsfrequenz (Drehzahl) gemeint ist:

\left[ f_\text{U} \right] = \mathrm{s}^{-1} (gesprochen „Die Einheit der (Umdrehungs-)Frequenz ist 1 pro Sekunde.“)
f_\text{U, Motor} = 2000 \, \mathrm{min}^{-1} („Die Drehzahl des Motors beträgt 2000 pro Minute.“)

Es kann auch ein eigenes, klar definiertes Formelzeichen eingesetzt werden. Um z. B. auf den doppelten Index im obigen Beispiel zugunsten einer leichteren Lesart zu verzichten, könnte man das ggf. einprägsamere Symbol U für „die Drehfrequenz, die Umdrehungszahl“ einführen und schreiben:

U_\text{Motor} = 2000 \, \mathrm{min}^{-1} („Die Drehzahl des Motors beträgt 2000 pro Minute.“)

(Ohne weitere Erläuterung könnte man in Regel z. B. auch

h_\text{Auto} = 1{,}5 \, \mathrm{m}, \ b_\text{Auto} = 2{,}2 \, \mathrm{m} („Die Höhe des Autos beträgt 1,5 Meter, die Breite des Autos beträgt 2,2 Meter.“)

verwenden, da die Symbole für die zwei Spezialfälle Höhe und Breite eines Längenmaßes gemeinhin üblich sind.)

In der Praxis findet nicht immer eine saubere Unterscheidung zwischen Größenwert bzw. Einheit einer physikalischen Größe einerseits und bloßen Zusatzangaben andererseits statt, so dass es zu Vermischungen kommt. Die aufgeführte Umdrehungszahl ist ein häufiges Beispiel dafür. „Umdrehung“ ist dort keine Einheit, sondern beschreibt lediglich den die Frequenz hervorrufenden Prozess näher. Nicht zulässig, jedoch häufig vorkommend, ist deshalb etwa

f_\text{Motor}= 2000 \, \mathrm{U}/\mathrm{min} („Die Drehzahl des Motors beträgt 2000 Umdrehungen pro Minute“).

Weitere Beispiele für häufig vorkommende falsche Schreib- bzw. Sprechweisen sind:[3]

Falsch: j = 1000 \, n \, \mathrm{cm}^{-2} \mathrm{s}^{-1} bzw. „Die Flussdichte ist 1000 Neutronen pro Quadratzentimeter und Sekunde.“[4]
Korrekt: j_\mathrm{n} = 1000 \, \mathrm{cm}^{-2} \mathrm{s}^{-1} bzw. „Die Neutronen-Flussdichte beträgt 1000 pro Quadratzentimeter und Sekunde.“
Falsch: n = 20 \, \mathrm{ng} \text{ Blei} / \mathrm{m}^3 bzw. „… eine Konzentration von 20 Nanogramm Blei pro Kubikmeter“[4]
Korrekt: n_\text{Pb} = 20 \, \mathrm{ng} / \mathrm{m}^3 bzw. „Die Blei-Massekonzentration beträgt 20 Nanogramm pro Kubikmeter.“
Falsch: \left[ H \right] = \mathrm{Aw} / \mathrm{m} bzw. „Die Einheit der magnetischen Feldstärke ist Ampere-Windungen pro Meter.“[4]
Korrekt: \left[ H \right] = \mathrm{A} / \mathrm{m} bzw. „Die Einheit der magnetischen Feldstärke ist Ampere pro Meter.“

Verknüpfung zwischen physikalischen Größen

Größengleichungen

\mathbf{F} = m\mathbf{a}
Größengleichung, die die Gesetzmäßigkeit zwischen Kraft, Masse und Beschleunigung darstellt.

Die Darstellung von Naturgesetzen und technischen Zusammenhängen in mathematischen Gleichungen nennt man Größengleichungen. Die Formelzeichen einer Größengleichung haben die Bedeutung physikalischer Größen, sofern sie nicht als Symbole für mathematische Funktionen oder Operatoren gemeint sind. Größengleichungen gelten unabhängig von der Wahl der Einheiten.

Größengleichungen verknüpfen verschiedene physikalische Größen und deren Größenwerte miteinander. Zur Auswertung muss man die Formelzeichen durch das Produkt aus Zahlenwert und Einheit ersetzen. Die verwendeten Einheiten sind dabei unerheblich. Die Größenart muss auf beiden Seiten des Gleichheitszeichens jedoch übereinstimmen, damit die Gleichung physikalisch sinnvoll ist.

Zahlenwertgleichungen

\begin{array}{rl}\mathrm{WCT}&=13{,}12+0{,}6215\,T\\
&=-11{,}37\,v^{0,16}+0,3965\,T\,v^{0{,}16}\end{array}
Zahlenwertgleichung zur Berechnung des Windchill-Effektes.

In Zahlenwertgleichungen haben die Formelzeichen ausschließlich die Bedeutung von Zahlenwerten. Sie sind daher abhängig von der Wahl der Einheiten und nur brauchbar, wenn diese auch bekannt sind. Das Benutzen von Größenwerten in anderen Einheiten führt meistens zwangsläufig zu Fehlern. Es empfiehlt sich daher, Berechnung grundsätzlich mit Größengleichungen durchzuführen und diese erst im letzten Schritt auszuwerten.

Formeln in historischen Texten, „Faustformeln“ und empirische Formeln sind meistens in der Form von Zahlenwertgleichungen angegeben. In einigen Fällen stehen die zu benutzenden Einheiten mit in der Gleichung. Die dabei manchmal anzutreffende Verwendung von eckigen Klammern um die Einheitenzeichen, wie etwa [V] anstatt V, ist sinnlos und nach DIN 1338 nicht korrekt. Korrekt hingegen ist das Setzen der Formelzeichen in geschweifte Klammern oder die Division der Größen durch die jeweils gewünschte Maßeinheit; man erhält dann eine sogenannte zugeschnittene Größengleichung.

Rechenregeln

15\;\mathrm{s}-3\;\mathrm{m}

5\;\mathrm{m}+10\;\mathrm{kg}
\log\left({299\,792\,458\,\frac{\rm m}{\rm s}}\right)

\sin(5\;\mathrm{A})
Unsinnige Rechenoperationen.

Für physikalische Größen sind nicht alle Rechenoperationen, die mit reinen Zahlen möglich wären, sinnvoll. Es hat sich erwiesen, dass eine geringe Anzahl Rechenregeln ausreicht, um alle bekannten Naturgeschehen zu beschreiben.

  • Addition und Subtraktion ist nur zwischen Größen der gleichen Größenart möglich.
  • Multiplikation und Division sowohl von verschiedenen Größen als auch mit reinen Zahlen sind uneingeschränkt möglich. Häufig ist das Produkt bzw. der Quotient eine neue physikalische Größe. Damit sind auch Potenzen mit ganzzahligen Exponenten erlaubt.
  • Transzendente Funktionen wie \exp,\,\log,\,\sin,\,\cos,\,\tanh, usw. sind nur für reine Zahlen definiert und damit nur bei dimensionslosen Größen möglich.
  • Das Differential einer Größe ist von der gleichen Größenart wie die Größe selbst. Differential- und Integralrechnung ist uneingeschränkt möglich.

Anhand dieser Regeln lässt sich die Gültigkeit einer Größengleichung überprüfen. Treten unmögliche Rechenoperationen auf, so ist dieses ein sicheres Zeichen für die physikalisch falsche Darstellung eines Sachverhaltes. Dieses Mittel wird in der Dimensionsanalyse oder der Dimensionsbetrachtung angewandt, um die mögliche Existenz einer noch unbekannten Gesetzmäßigkeit zu überprüfen.

Größen- und Einheitensysteme

Größensysteme

Jedes Wissensgebiet der Technik und Naturwissenschaften verwendet einen beschränkten Satz an physikalischen Größen, die über Naturgesetze miteinander verknüpft sind. Wählt man aus diesen Größen wenige Basisgrößen aus, so dass sich alle anderen des betrachteten Gebietes als Potenzprodukte der Basisgrößen darstellen lassen, dann bilden alle Größen zusammen ein Größensystem, sofern außerdem keine Basisgröße aus den anderen Basisgrößen dargestellt werden kann. Die aus den Basisgrößen darstellbaren Größen heißen abgeleitete Größen, das Potenzprodukt bezeichnet man als Dimensionsprodukt. Welche Größen man für die Basis wählt, ist grundsätzlich willkürlich und geschieht meistens aus praktischen Gründen. Die Anzahl der Basisgrößen bestimmt den Grad des Größensystems. Beispielsweise ist das internationale Größensystem mit seinen sieben Basisgrößen ein Größensystem siebten Grades.

Einheitensysteme

Man benötigt für jede Größe eine Einheit, um Größenwerte angeben zu können. Daher entspricht jedem Größensystem ein Einheitensystem gleichen Grades, das sich analog aus voneinander unabhängigen Basiseinheiten und den aus diesen darstellbaren abgeleiteten Einheiten zusammensetzt. Die abgeleiteten Einheiten werden aus den Basiseinheiten durch Produkte von Potenzen dargestellt – im Unterschied zu Größensystemen eventuell ergänzt durch einen Zahlenfaktor. Man bezeichnet das Einheitensystem als kohärent (zusammenhängend), wenn alle Einheiten ohne diesen zusätzlichen Faktor gebildet werden können. In derartigen Systemen können alle Größengleichungen als Zahlenwertgleichungen aufgefasst und dementsprechend schnell ausgewertet werden.

Das in fast allen Ländern der Welt benutzte internationale Einheitensystem (SI) ist ein kohärentes Einheitensystem siebten Grades, das auf dem internationalen Größensystem fußt. Das SI definiert zudem standardisierte Vorsätze für Maßeinheiten, allerdings sind die so gebildeten Vielfachen oder Teile einer SI-Einheit selbst nicht Teil des eigentlichen Einheitensystems, da dies der Kohärenz widerspräche. Beispielsweise ist ein fiktives Einheitensystem, das die Basiseinheiten Zentimeter (cm) und Sekunde (s) sowie die abgeleitete Einheit Meter pro Sekunde (m / s) umfasst, nicht kohärent: Wegen 1\,\mathrm{\frac{m}{s}} = 100\,\mathrm{cm\cdot s^{-1}} benötigt man einen Zahlenfaktor (100) bei der Bildung dieses Systems.

Besondere Größen

Quotienten- und Verhältnisgrößen

Der Quotient zweier Größen ist eine neue Größe. Eine solche Größe bezeichnet man als Verhältnisgröße, wenn die Ausgangsgrößen von der gleichen Größenart sind, ansonsten als Quotientengröße.

Häufig werden Quotientengrößen umgangssprachlich falsch umschrieben. Beispielsweise ist eine Bezeichnung der Fahrtgeschwindigkeit als „zurückgelegter Weg je Zeiteinheit“ sachlich nicht korrekt, da die Definition einer Größe von möglichen Einheiten unabhängig ist. Nähme man solche Bezeichnungen wörtlich, führte dieses unweigerlich zu verschiedenen Größenwerten je nach benutzter Einheit. Korrekt müsste man daher „zurückgelegter Weg je vergangener Zeit“ oder einfach „Weg je Zeit“ sagen.

v = \frac{V}{m} „spezifisches Volumen“
\rho = \frac{m}{V} „Massedichte“
Benennung von bezogenen Größen.

Falls zwei Größen sich auf eine Eigenschaft des gleichen Objektes beziehen, nennt man die Quotientengröße auch bezogene Größe. Hierbei ist die Nennergröße die Bezugsgröße, während die Zählergröße den Schwerpunkt in der Namensgebung setzt. Insbesondere bezeichnet man eine bezogene Größe als …

  • spezifisch, wenn sie sich auf die Masse bezieht.
  • molar, wenn sie sich auf die Stoffmenge bezieht.
  • -dichte, wenn sie sich auf das Volumen bezieht.

Verhältnisgrößen sind grundsätzlich dimensionslos. Sie können nach obigen Rechenregeln als Argumente von transzendenten Funktionen auftreten. Der Name einer Verhältnisgröße beinhaltet meistens ein Adjektiv wie relativ oder normiert oder er endet auf -zahl oder -wert. Beispiele sind die Reynoldszahl und der CW-Wert.

\begin{array}{lll}
1\,{}^{0\!}\!/\!_{0}&=&0{,}01\\
1\,{}^{0\!}\!/\!_{00}&=&0{,}001\\
1\,\mathrm{ppm}&=&0{,}000\,001\end{array}
Spezielle Verhältniseinheiten.

Verschiedene Verhältnisgrößen gehören nur in seltenen Fällen zur gleichen Größenart, manchmal werden daher zur besseren Trennung bei der Angabe ihres Größenwerts die Einheitenzeichen nicht gekürzt. Häufig werden Verhältnisgrößen in den Einheiten %, oder ppm angegeben. Eine besondere Stellung haben Verhältniseinheiten, wenn sie das Verhältnis gleicher Einheiten sind. Diese sind immer 1 und damit idempotent, d. h., sie können beliebig oft mit sich selbst multipliziert werden, ohne ihren Wert zu ändern. Einige idempotente Verhältniseinheiten tragen besondere Namen, wie beispielsweise die Winkeleinheit Radiant (rad). In kohärenten Einheitensystemen sind die Verhältniseinheiten immer 1, also idempotent.

Idempotente Verhältniseinheiten sind deshalb interessant, weil man hier die Zahlenwerte einfach multiplizieren kann. Sagt man beispielsweise, dass 30 % der Erdoberfläche Landfläche sind und der Kontinent Asien 30 % der Landfläche darstellt, kann man daraus nicht folgern, dass 900 % der Erdoberfläche vom Kontinent Asien bedeckt sind, weil % nicht idempotent ist, also %2 nicht dasselbe wie % ist. Sagt man nun aber, dass ein Anteil von 0,3 der Erdoberfläche Landfläche ist und der Kontinent Asien einen Anteil von 0,3 der Landfläche einnimmt, kann man folgern, dass 0,09 der Erdoberfläche vom Kontinent Asien bedeckt sind, weil wir hier die Einheit 1 haben, die idempotent ist.

Feld- und Energiegrößen

\begin{align}
F^2\propto W &\Leftrightarrow \frac{F_1^2}{F_2^2}=\frac{W_1}{W_2}\\
\ln\!\left(\frac{F_1}{F_2}\right)\,\text{Np} &= \frac{1}{2}\ln\!\left(\frac{W_1}{W_2}\right)\,\text{Np}\\
20\lg\!\left(\frac{F_1}{F_2}\right)\,\text{dB} &= 10\lg\!\left(\frac{W_1}{W_2}\right)\,\text{dB}
\end{align}
Zusammenhang zwischen Feldgrößen F und Energiegrößen W. Die zweite (dritte) Zeile zeigt die Definition der Hilfseinheit Neper (Dezibel).

Feldgrößen dienen der Beschreibung von physikalischen Feldern. Das Quadrat einer Feldgröße ist in linearen Systemen proportional zu dessen energetischem Zustand, der über eine Energiegröße erfasst wird. Ohne die genaue Gesetzmäßigkeit kennen zu müssen, folgt daraus unmittelbar, dass das Verhältnis zweier Energiegrößen gleich dem quadratischen Verhältnis der zugehörigen Feldgrößen ist. Dabei ist unerheblich ob die Energiegrößen zu Größen der Größenart Energie oder bezogenen Größen, wie Leistung (Energie pro Zeit) und Intensität (Energie pro Zeit und Fläche), gehören. Energiegrößen werden deshalb auch als Leistungsgrößen bezeichnet.

In vielen technischen Bereichen sind die logarithmierten Verhältnisse von besonderem Interesse. Derartige Größen werden als Pegel oder Maß bezeichnet. Wird bei der Bildung der natürliche Logarithmus verwendet, so kennzeichnet man dieses durch die Hilfseinheit Neper (Np), ist es der dekadische Logarithmus, so nutzt man die Hilfseinheit Bel (B) bzw. häufiger ihr Zehntel, das Dezibel (dB).

Zustands- und Prozessgrößen

Vor allem in der Thermodynamik wird zwischen Zustandsgrößen und Prozessgrößen unterschieden.

Zustandsgrößen sind dabei physikalische Größen, die eine Eigenschaft eines Systemzustands repräsentieren. Man unterscheidet weiterhin zwischen extensiven und intensiven Größen. Extensive Größen wie Masse und Stoffmenge verdoppeln ihren Größenwert bei Systemverdopplung, intensive Größen wie Temperatur und Druck bleiben dabei konstant. Ebenfalls gebräuchlich ist die Unterscheidung zwischen stoffeigenen und systemeigenen Zustandsgrößen.

Prozessgrößen hingegen beschreiben einen Vorgang, nämlich den Übergang zwischen Systemzuständen. Zu ihnen gehören insbesondere die Größen „Arbeit“ (W) und „Wärme“ (Q). Um ihren Charakter als reine Vorgangsgrößen zum Ausdruck zu bringen, werden sie vielerorts ausschließlich als Differentiale angegeben, wobei ihnen häufig kein d, sondern ein δ oder đ vorangestellt wird.

Siehe auch

Normen

Einzelnachweise

  1. DIN 1313
  2. Eine Ausnahme sind die gebräuchlichen Einheiten für Temperatur, die sich zusätzlich um einen konstanten Term unterscheiden. Der Grund liegt in der abweichenden Definition vom Nullpunkt.
  3. Unglücklicherweise lässt auch das deutsche und internationale Normenwerk gelegentlich Vermischungen zu, insbesondere bei Hilfsmaßeinheiten, z. B. „dB (C)“; hierbei ist das „C“ ein Hinweis auf das Messverfahren, nach dem das Pegelmaß ermittelt wird, das mit Hilfe der Hilfsmaßeinheit Dezibel angegeben wird.
  4. a b c Die Ergänzungen für Neutronen, Blei und Windungen sind hier in den inkorrekten Formeln willkürlich teils kursiv, teils nicht kursiv gedruckt, da eine richtige Schreibweise ohnehin nicht möglich ist und beide Möglichkeiten vorkommen. Die entsprechenden korrekten Notationen hingegen befolgen auch die im Abschnitt Schreibweise erwähnten Regeln zur Kursivschreibung.

Literatur

  • Hans Dieter Baehr: Physikalische Größen und ihre Einheiten – Eine Einführung für Studenten, Naturwissenschaftler und Ingenieure. Band 19 der Reihe Studienbücher Naturwissenschaft und Technik, Bertelsmann Universitätsverlag, Düsseldorf 1974. ISBN 3-571-19233-8
  • Hans Rupp: Physikalische Größen, Formeln, Gesetze und Definitionen. 2. Auflage, Oldenbourg Schulbuchverlag, Juni 1995. ISBN 3-486-87093-9
  • Paul A. Tipler: Physik. 3. korrigierter Nachdruck der 1. Auflage 1994, Spektrum Akademischer Verlag Heidelberg Berlin, 2000, ISBN 3-86025-122-8

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • значение физической величины — значение величины Выражение размера физической величины в виде некоторого числа принятых для нее единиц. [РМГ 29 99] Тематики метрология, основные понятия Синонимы значение величины EN value (of a quantity) DE Grössenwert FR valeur (d´une… …   Справочник технического переводчика

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”