Erfi

Erfi
Plot der Fehlerfunktion

Als Fehlerfunktion bezeichnet man in der Approximationstheorie die Differenz zwischen einer Funktion und ihrer besten Approximation. In der Theorie der speziellen Funktionen versteht man unter Fehlerfunktion oder Gaußsche Fehlerfunktion das Integral

\operatorname{erf}(z) = \frac 2{\sqrt\pi} \int_0^z e^{-\tau^2}\,\mathrm d\tau\ \ \ (z\in\mathbb{C}).

Die Fehlerfunktion findet Anwendung in der Statistik und in der Theorie der partiellen Differentialgleichungen.


Inhaltsverzeichnis

Eigenschaften

Die Bezeichnung erf(z) kommt von error function. Die komplementäre (bzw. konjugierte) Fehlerfunktion \operatorname{erfc}(z) ist gegeben durch:

\operatorname{erfc}(z) = 1 - \operatorname{erf}(z) = \frac 2{\sqrt\pi} \int_z^\infty e^{-\tau^2}\,\mathrm d\tau.

Die imaginäre Fehlerfunktion \operatorname{erfi}(z) ist gegeben durch:

\operatorname{erfi}(z) = \operatorname{erf}(iz)/i.

Die verallgemeinerte Fehlerfunktion \operatorname{erf}(a,b) wird durch das Integral:

\operatorname{erf}(a,b) = \frac 2{\sqrt\pi} \int_a^b e^{-\tau^2}\,\mathrm d\tau

definiert. Es gilt \operatorname{erf}(a,b)=\operatorname{erf}(b)-\operatorname{erf}(a).

Die Fehlerfunktion ist ungerade:

\operatorname{erf} (-x) = -\operatorname{erf} (x).

Weiterhin gilt für die Fehlerfunktion mit komplexem Argument x

\operatorname{erf} (x^{*}) = \operatorname{erf}(x)^{*}

wobei x * die komplexe Konjugation x darstellt.

Verwendung

Verwandtschaft mit der Normalverteilung

Die Fehlerfunktion hat eine gewisse Ähnlichkeit mit der Verteilungsfunktion der Normalverteilung. Sie hat jedoch eine Zielmenge von ( − 1,1), während eine Verteilungsfunktion zwingend Werte aus dem Bereich [0,1] annehmen muss.

Es gilt für die Standardnormalverteilung

\Phi(x) = \frac 12\left(1+\mbox{erf}\left(\frac x{\sqrt 2}\right)\right)

bzw. für die Verteilungsfunktion F einer beliebigen Normalverteilung mit Standardabweichung σ und Erwartungswert μ

F(x) = \frac 12\left(1+\mbox{erf}\left(\frac{x-\mu}{\sigma\sqrt 2}\right)\right).

Wenn die Ergebnisse einer Messreihe durch eine Normalverteilung mit Standardabweichung σ und Erwartungswert 0 beschrieben werden können, dann ist \operatorname{erf}\left(\frac a{\sigma \sqrt 2}\right) die Wahrscheinlichkeit, mit der der Messfehler einer einzelnen Messung zwischen a und + a liegt.

Wärmeleitungsgleichung

Die Fehlerfunktion und die komplementäre Fehlerfunktion kommen beispielsweise in Lösungen der Wärmeleitungsgleichung vor, wenn Randwertbedingungen durch die Heaviside-Funktion vorgegebenen sind.

Numerische Berechnung

Die Fehlerfunktion ist wie die Verteilungsfunktion der Normalverteilung nicht durch eine geschlossene Funktion darstellbar und muss numerisch bestimmt werden.

Für kleine reelle Werte erfolgt die Berechnung mit der Reihenentwicklung

\operatorname{erf}(x) 
= \frac 2\sqrt{\pi}\sum_{n=0}^\infty\frac{(-1)^n x^{2n+1}}{(2n+1)n!}
= \frac 2\sqrt{\pi}\left(
   x - \frac{x^3}3 + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} - \dotsb \right),

für große reelle Werte mit der Kettenbruchentwicklung

\operatorname{erf}(x)
= 1 - \frac{e^{-x^2}}{\sqrt\pi\left(x + \frac 1{2x + \frac 2{x + \frac 3{2x + \frac 4{x + \dotsb}}}}\right)}.

Wertetabelle

x erf(x) erfc(x) x erf(x) erfc(x)
0,00 0,0000000 1,0000000 1,30 0,9340079 0,0659921
0,05 0,0563720 0,9436280 1,40 0,9522851 0,0477149
0,10 0,1124629 0,8875371 1,50 0,9661051 0,0338949
0,15 0,1679960 0,8320040 1,60 0,9763484 0,0236516
0,20 0,2227026 0,7772974 1,70 0,9837905 0,0162095
0,25 0,2763264 0,7236736 1,80 0,9890905 0,0109095
0,30 0,3286268 0,6713732 1,90 0,9927904 0,0072096
0,35 0,3793821 0,6206179 2,00 0,9953223 0,0046777
0,40 0,4283924 0,5716076 2,10 0,9970205 0,0029795
0,45 0,4754817 0,5245183 2,20 0,9981372 0,0018628
0,50 0,5204999 0,4795001 2,30 0,9988568 0,0011432
0,55 0,5633234 0,4366766 2,40 0,9993115 0,0006885
0,60 0,6038561 0,3961439 2,50 0,9995930 0,0004070
0,65 0,6420293 0,3579707 2,60 0,9997640 0,0002360
0,70 0,6778012 0,3221988 2,70 0,9998657 0,0001343
0,75 0,7111556 0,2888444 2,80 0,9999250 0,0000750
0,80 0,7421010 0,2578990 2,90 0,9999589 0,0000411
0,85 0,7706681 0,2293319 3,0 0,9999779 0,0000221
0,90 0,7969082 0,2030918 3,10 0,9999884 0,0000116
0,95 0,8208908 0,1791092 3,20 0,9999940 0,0000060
1,00 0,8427008 0,1572992 3,30 0,9999969 0,0000031
1,10 0,8802051 0,1197949 3,40 0,9999985 0,0000015
1,20 0,9103140 0,0896860 3,50 0,9999993 0,0000007

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Fonction d'erreur — Pour les articles homonymes, voir Fonction, Erreur et erf. Construction de la fonction d erreur réelle. En mathématiques, la fonction d erreur (aussi appelée …   Wikipédia en Français

  • Функция Доусона — вблизи начала координат …   Википедия

  • Fonction de Dawson — La fonction de Dawson, F(x), près de l origine …   Wikipédia en Français

  • Error function — Plot of the error function In mathematics, the error function (also called the Gauss error function) is a special function (non elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations. It is defined …   Wikipedia

  • Rayleigh distribution — Probability distribution name =Rayleigh type =density pdf cdf parameters =sigma>0, support =xin [0;infty) pdf =frac{x expleft(frac{ x^2}{2sigma^2} ight)}{sigma^2} cdf =1 expleft(frac{ x^2}{2sigma^2} ight) mean =sigma sqrt{frac{pi}{2 median… …   Wikipedia

  • Dawson function — The Dawson function, F(x) = D + (x), around the origin …   Wikipedia

  • Loi de Rayleigh — Rayleigh Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • Erbe — Erbe1 Sn Erbgut std. (8. Jh.), mhd. erbe, ahd. erbi, as. er␢i Stammwort. Aus g. * arbija n. Erbe , auch in gt. arbi, ae. i(e)rfe, yrfe, afr. erve; entsprechendes anord. erfi bedeutet Leichenschmaus . Die ursprünglichen Zusammenhänge spiegelt am… …   Etymologisches Wörterbuch der deutschen sprache

  • orbho- —     orbho     English meaning: orphan; servant; work     Deutsche Übersetzung: “verwaist, Waise”; out of it (Arm. Gk. with ano , Celt. Gmc. with i̯oderivative) “Waisengut = Erbe”, whereof “the Erbe”; “Waise” = ‘small kid, child, klein, schwach,… …   Proto-Indo-European etymological dictionary

  • Almost integer — Ed Pegg, Jr. noted that the length d equals that is very close to 7 (7.0000000857 ca.)[1] In recreational mathematics an …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”