Dopplereffekt


Dopplereffekt
Änderung der Wellenlänge durch Dopplereffekt
Änderung der Wellenlänge bei Bewegung der Schallquelle
Doppler-Effekt in der Bugwelle eines Schwanes

Als Dopplereffekt (auch Doppler-Effekt) bezeichnet man die Veränderung der wahrgenommenen oder gemessenen Frequenz von Wellen jeder Art, während sich die Quelle und der Beobachter einander nähern oder voneinander entfernen, sich also relativ zueinander bewegen.

Nähern sich Beobachter und Quelle einander, so erhöht sich die vom Beobachter wahrgenommene Frequenz, entfernen sie sich voneinander, verringert sich die Frequenz. Bekanntes Beispiel ist die Tonhöhenänderung des Martinhorns eines Rettungswagens. Solange sich das Fahrzeug nähert, ist der wahrgenommene Ton höher als im Stand; wenn es sich entfernt, ist er tiefer.

Inhaltsverzeichnis

Entdeckung

Der Dopplereffekt wurde nach dem österreichischen Physiker und Mathematiker Christian Doppler benannt, der ihn 1842 voraussagte. Doppler wollte die unterschiedlichen Farben der Sterne durch ihre Eigenbewegung erklären. Auch wenn er damit falsch lag – die Farben entstehen hauptsächlich durch unterschiedliche Oberflächentemperatur der Sterne – war seine Berechnung im Prinzip richtig.

Ein Experiment zum Dopplereffekt mit Schallwellen wurde 1845 vom Physiker Christoph Buys-Ballot durchgeführt. Er postierte dazu mehrere Trompeter sowohl auf einem fahrenden Eisenbahnzug als auch neben der Bahnstrecke. Beim Vorbeifahren sollte jeweils einer von ihnen ein G spielen und die anderen die gehörte Tonhöhe bestimmen. Trotz Schwierigkeiten bei der Durchführung – das Geräusch der Lokomotive war sehr laut, die Musiker waren manchmal unaufmerksam – gelang es Buys-Ballot, den Dopplereffekt zu bestätigen. Armand Hippolyte Fizeau entdeckte den Effekt für Licht im Jahre 1848.

William Huggins wandte den Dopplereffekt auf Sternbewegungen an und erkannte, dass sich zum Beispiel der Stern Sirius von uns stetig entfernte.

Begründung des Dopplereffektes

Illustrierung der Abhängigkeit der Wellenlänge von der Ausbreitungsrichtung bei einem sich bewegenden Objekt
Dopplereffekt am Beispiel zweier sich bewegender Polizeiwagen und eines ortsfesten Mikrophons

Bei der Erklärung des akustischen Dopplereffekts ist zu unterscheiden, ob sich die Schallquelle, der Beobachter, oder beide relativ zum Medium (der ruhenden Luft) bewegen.

Beobachter in Ruhe, Signalquelle bewegt

Als Beispiel soll angenommen werden, dass das Martinshorn des Krankenwagens Schallwellen mit einer Frequenz von 1000 Hertz aussendet. Dieses bedeutet, dass genau 1/1000 Sekunde nach dem ersten Wellenberg ein zweiter Wellenberg nachfolgt. Die Wellen breiten sich mit der Schallgeschwindigkeit c\approx 340\ \mathrm{m/s} bei 20 °C aus.

So lange der Krankenwagen steht, ist die Wellenlänge λs des Schalls, also der Abstand der Wellenberge:

340\ \mathrm{m/s} \cdot 1/1000\ \mathrm{s} = 0{,}34\ \mathrm{m}

Für einen Beobachter an der Straße kommen diese Wellenberge zwar je nach Entfernung etwas zeitverzögert an. Die Zeit zwischen zwei Wellenbergen ändert sich jedoch nicht. Die Grundfrequenz fs des wahrgenommenen Tons ist für jeden Abstand von Beobachter und Krankenwagen gleich.

Die Situation ändert sich, wenn der Krankenwagen mit der Geschwindigkeit v auf den Beobachter zufährt. Da sich der Wagen in der Zeit zwischen den beiden Wellenbergen weiterbewegt, verkürzt sich der Abstand zwischen ihnen etwas. Sie verkürzt sich um den Weg, den der Wagen in der Zeit von 1/1000 Sekunde zurücklegt:

\lambda_B = \lambda_S - \frac{v_S}{f_S}

Die Indizes S und B verweisen auf den Sender beziehungsweise Beobachter der Welle. Da sich beide Wellenberge mit derselben Schallgeschwindigkeit c zum Beobachter bewegen, bleibt der verkürzte Abstand zwischen ihnen erhalten, und der zweite Wellenberg kommt nicht erst 1/1000 Sekunde nach dem ersten an, sondern schon ein wenig früher. Dadurch erscheint dem Beobachter die Frequenz (also die Tonhöhe) des Martinshornes höher (fB > fS).

Quantitativ erhält man die Frequenzänderung einfach durch Einsetzen der Beziehung \lambda \cdot f = c in obige Formel für λB. Für die vom Beobachter wahrgenommene Frequenz fB ergibt sich somit:

(1) f_B = \frac{f_S}{1-\frac{v}{c}} \,

Dabei bedeuten fS die Frequenz der Schallquelle, c die Ausbreitungsgeschwindigkeit des Schalls und v die Geschwindigkeit der Schallquelle (also des Krankenwagens).

Wenn der Krankenwagen am Beobachter vorbei gefahren ist, verhält es sich sinngemäß umgekehrt: der Abstand zwischen den Wellenbergen (Wellenlänge) vergrößert sich, und der Beobachter hört einen tieferen Ton. Rechnerisch gilt obige Formel genauso, man muss nur für v eine negative Geschwindigkeit einsetzen.

Die beschriebenen Bewegungen der Signalquelle direkt auf den Beobachter zu oder direkt von ihm weg sind Spezialfälle. Bewegt sich die Signalquelle beliebig im Raum mit der Geschwindigkeit \vec{v} so kann die Dopplerverschiebung für einen ruhenden Empfänger zu

f_{B}=\frac{f_{S}}{1-\frac{\vec{v}\cdot \vec{e}_{SB}}{c}} \,

angegeben werden. \vec{e}_{SB} ist dabei der zeitabhängige Einheitsvektor der die Richtung von der Signalquelle S zum Beobachter B beschreibt.

Beobachter bewegt, Signalquelle in Ruhe

Auch bei ruhender Schallquelle S und bewegtem Beobachter B tritt ein Dopplereffekt auf, allerdings ist hier die Ursache eine andere: Wenn der Wagen ruht, ändert sich auch nichts am Abstand zwischen den Wellenbergen, die Wellenlänge bleibt also gleich. Allerdings kommen die Wellenberge scheinbar schneller hintereinander bei dem Beobachter an, wenn sich dieser auf den Krankenwagen zubewegt:

\lambda_B = \lambda_S \,
(c + v) T_B = c T_S \, bzw.
(2) f_B = f_S \left(1 + \frac{v}{c}\right) \,

Auch hier wieder ergibt sich der Fall eines sich entfernenden Beobachters durch Einsetzen einer negativen Geschwindigkeit.

Für eine beliebige Bewegung des Beobachters B mit dem Geschwindigkeitsvektor \vec{v} ergibt sich bei ruhendem Sender S der Dopplereffekt zu

f_{B}=f_{S}\left( 1-\frac{\vec{v}\cdot \vec{e}_{SB}}{c} \right) \,

wobei \vec{e}_{SB} wiederum der Einheitsvektor zur Beschreibung der Richtung von der Signalquelle S zum Beobachter B ist, der im allgemeinen Fall, genau wie der Geschwindigkeitsvektor \vec{v}, zeitabhängig sein kann.

Wie man sieht, sind die Gleichungen (1) und (2) nicht identisch (nur im Grenzfall v \ll c nähern sie sich einander an). Offensichtlich wird das im Extremfall: bewegt sich der Beobachter mit Schallgeschwindigkeit auf die Signalquelle zu, erreichen ihn die Wellenberge doppelt so schnell, und er hört einen Ton doppelter Frequenz. Bewegt sich hingegen die Signalquelle mit Schallgeschwindigkeit, wird der Abstand zwischen den Wellenbergen praktisch null, sie überlagern sich und es kommt zu einer extremen Verdichtung der Luft (siehe Schallmauerdurchbruch). Da so alle Wellenberge gleichzeitig beim Beobachter eintreffen, wäre das nach obiger Formel theoretisch eine unendliche Frequenz - praktisch hört man keinen Ton einer bestimmten Frequenz, sondern den Überschallknall.

Beobachter und Signalquelle bewegt

Durch Kombination der Gleichungen (1) und (2) kann man eine Gleichung herleiten, die die für den Beobachter wahrgenommene Frequenz fB beschreibt, wenn der Sender und der Empfänger in Bewegung sind.

Sender und Empfänger bewegen sich aufeinander zu:

(3) f_{\rm B} = f_{\rm S} \cdot\frac{1+\frac{v_{\rm B}}{c}}{1-\frac{v_{\rm S}}{c}} \,

Sender und Empfänger bewegen sich voneinander weg:

(4) f_{\rm B} = f_{\rm S} \cdot\frac{1-\frac{v_{\rm B}}{c}}{1+\frac{v_{\rm S}}{c}} \,

Dabei ist vB die Geschwindigkeit des Beobachters und v_{\rm S} \, die Geschwindigkeit des Senders der Schallwellen.

Allgemeines Dopplergesetz für Schallquellen

Allgemein lässt sich der Frequenzunterschied schreiben als:

(5)f_{\rm B}=f_{\rm S} \left( \frac{c \pm v_{\rm B}}{c \mp v_{\rm S}}\right) \,

Dabei ist vB die Geschwindigkeit des Beobachters und vS die des Senders der Schallwellen, jeweils relativ zum Medium (z. B. der Luft). Das obere Operationszeichen gilt jeweils für Annäherung (Bewegung in Richtung des Senders bzw. Empfängers). D. h. beide Geschwindigkeiten werden positiv in Richtung des Beobachters bzw. Senders gemessen. Mit vB = 0 oder vS = 0 ergeben sich die oben genannten Spezialfälle. Weiter sieht man, dass sich der Effekt aufhebt (es also keine Tonhöhenänderung gibt), wenn vS = − vB. Das entspricht dem Fall, wenn sich Sender und Empfänger beide in dieselbe Richtung mit derselben Geschwindigkeit relativ zum Medium bewegen. Üblicherweise tritt so ein Fall auf, wenn sich das Medium selbst bewegt, während Sender und Empfänger ruhen (Wind). Deswegen kommt es unabhängig von der Windstärke zu keinem Dopplereffekt.

Zu den Formeln ist noch zu sagen, dass sie unter der Annahme abgeleitet wurden, dass sich Quelle und Beobachter direkt aufeinander zubewegen. In realen Fällen fährt der Krankenwagen in einem bestimmten Mindestabstand an dem Beobachter vorbei. Das hat zur Folge, dass sich der Abstand zwischen Quelle und Beobachter nicht gleichmäßig ändert, und deswegen - besonders unmittelbar vor und nach dem Vorbeifahren - ein kontinuierlicher Übergang der Tonhöhe von höher zu tiefer zu hören ist.

Dopplereffekt ohne Medium

Relativistischer Dopplereffekt und Geschwindigkeit

Elektromagnetische Wellen breiten sich auch im Vakuum, also ohne Medium aus. Wenn sich der Sender der Wellen relativ zum Empfänger bewegt, tritt auch in diesem Fall eine Verschiebung der Frequenz auf. Dieser Relativistische Dopplereffekt ist darauf zurück zu führen, dass die Wellen sich mit endlicher Geschwindigkeit, nämlich der Lichtgeschwindigkeit ausbreiten. Man kann ihn als geometrischen Effekt der Raumzeit auffassen.[1]

Longitudinaler Dopplereffekt

Bei elektromagnetischen Wellen im Vakuum (Optischer Dopplereffekt) gibt es kein Medium, deswegen hängt die beobachtete Frequenzänderung nur von der relativen Geschwindigkeit von Quelle und Beobachter ab; ob sich dabei die Quelle, der Beobachter oder beide bewegen, hat keinen Einfluss auf die Höhe der Frequenzänderung.

Aufgrund des Relativitätsprinzips darf sich jeder Beobachter als ruhend betrachten. Allerdings muss er dann bei der Berechnung des Dopplereffekts zusätzlich zu obigen Betrachtungen auch noch die Zeitdilatation der relativ zum Beobachter bewegten Quelle berücksichtigen. Somit erhält man für den relativistischen Dopplereffekt:

(6) f_{\rm B} = \frac{f_{\rm S} \sqrt{1-\frac{v^2}{c^2}}}{1-\frac{v}{c}} = f_{\rm S} \sqrt{\frac{c+v}{c-v}} \,

Wie bisher entsprechen auch hier positive Geschwindigkeiten einer Annäherung und negative eine Entfernung von Sender und Beobachter. Bewegt sich die Lichtquelle durch ein Medium mit einer Brechzahl n > 1 (z.B. durch Wasser), so ist in diesem Medium die Lichtgeschwindigkeit c' kleiner als die Vakuum-Lichtgeschwindigkeit. In die Zeitdilatation geht aber weiterhin die Vakuumlichtgeschwindigkeit ein, so dass sich in diesem Fall ergibt:

(8) f_{\rm B} = f_{\rm S} \frac{\sqrt{1-\frac{v^2}{c^2}}}{1-\frac{v}{c'}} \,

Diese Formel geht für v \ll c' < c in die nichtrelativistische Formel über, selbst wenn v nicht wesentlich kleiner als c' ist.

Transversaler Dopplereffekt

Bewegt sich ein Objekt zu einem gewissen Zeitpunkt quer zum Beobachter, so kann man die Änderung des Abstandes zu diesem Zeitpunkt vernachlässigen; dementsprechend würde man hier auch keinen Dopplereffekt erwarten. Jedoch besagt die Relativitätstheorie, dass jedes Objekt aufgrund seiner Bewegung einer Zeitdilatation unterliegt, aufgrund der die Frequenz ebenfalls verringert wird. Diesen Effekt bezeichnet man als transversalen Dopplereffekt. Die Formel hierfür lautet

(9) f_{\rm B} = \frac{f_{\rm S}}{\gamma} = f_{\rm S} \sqrt{1-\frac{v^2}{c^2}} \approx f_{\rm S} \left(1 - \frac{v^2}{2c^2}\right) \,

wobei c hier die Vakuum-Lichtgeschwindigkeit bezeichnet.

Der transversale Dopplereffekt kann bei nicht-relativistischen Geschwindigkeiten (also Geschwindigkeiten weit unter der Lichtgeschwindigkeit) allerdings vernachlässigt werden.

Dopplereffekt bei beliebigem Winkel

Relativistischer Dopplereffekt und Richtung

Der Dopplereffekt lässt sich ganz allgemein abhängig vom Winkel der Bewegungsrichtung zur Achse Quelle-Empfänger angeben. Die Frequenzänderung für beliebige Winkel α ergibt sich zu

(10)  f_{\rm B} = f_{\rm S} \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c}\cos{\alpha}} ,.

Wenn man für den Winkel α 0°, 90°, oder 180° einsetzt, dann erhält man die oben stehenden Gleichungen für longitudinalen und transversalen Dopplereffekt. Man erkennt außerdem, dass der Winkel, unter dem der Dopplereffekt verschwindet, von der Relativgeschwindigkeit abhängt, anders als beim Dopplereffekt für Schall, wo er immer 90° beträgt.

Dopplereffekt und astronomische Rotverschiebung

Auch wenn die zu beobachtenden Auswirkungen von Dopplereffekt und astronomischer Rotverschiebung identisch sind (Verminderung der beobachteten Frequenz der elektromagnetischen Strahlung eines Sterns oder einer Galaxie), so dürfen beide trotzdem nicht verwechselt werden, da sie gänzlich andere Ursachen haben. Der relativistische Dopplereffekt ist nur dann Hauptursache für die Frequenzänderung, wenn sich Sender und Empfänger wie oben beschrieben durch die Raumzeit bewegen und ihr Abstand so gering ist, dass die Ausdehnung des zwischen ihnen liegenden Raumes im Verhältnis gering ist. Ab einer bestimmten Entfernung überwiegt bei weitem jener Anteil, der durch die Ausdehnung der Raumzeit selbst hervorgerufen wird, so dass der Anteil des hier diskutierten Dopplereffekts gänzlich vernachlässigt werden kann.

Anwendungen

Der Dopplereffekt tritt bei Echos von ausgesendeten akustischen und elektromagnetischen Signalen auf.

Radartechnik

Beim Doppler-Radar berechnet man die Annäherungsgeschwindigkeit eines Objekts aus der gemessenen Frequenzänderung zwischen gesendetem und reflektiertem Signal. Die Besonderheit bei einem aktiven Radargerät ist jedoch, dass der Dopplereffekt zweimal auftritt. Auf dem Sendeweg vom Radar zum bewegten Objekt das erste Mal analog dem Fall Signalquelle in Ruhe, Beobachter bewegt: ein Radarwarnempfänger in diesem Objekt würde eine einfache Dopplerfrequenz proportional zur Radialgeschwindigkeit messen. Reflektiert wird die Sendefrequenz plus dieser Dopplerfrequenz, das reflektierende Objekt kann als Signalquelle für eine Frequenz gleich der ursprünglichen Sendefrequenz plus der Dopplerfrequenz angesehen werden. Dieses Signal unterliegt jetzt den Bedingungen analog dem Fall Signalquelle bewegt, Beobachter in Ruhe. Auf diesem Weg tritt die Dopplerverschiebung noch einmal auf, der Empfänger im Radargerät registriert die zweifache Dopplerfrequenz.

Dopplerradar MIM-23 Hawk

Medizinische Diagnostik

In der Medizin wird der akustische Dopplereffekt bei Ultraschalluntersuchungen ausgenutzt, um die Blutstromgeschwindigkeit darzustellen und zu messen. Dabei hat er sich als außerordentlich hilfreich erwiesen. Es gibt dabei einen:

  • Farbdoppler:
    • Rot: Fluss auf die Schallsonde zu
    • Blau: Fluss von der Schallsonde weg
  • pW-Doppler: gepulster Doppler (beispielsweise für Gefäßuntersuchungen)
  • cW-Doppler: continuous wave Doppler (beispielsweise für Herzklappenmessungen)

Laserdoppler

Für die berührungslose Messung der Geschwindigkeitsverteilung von Fluiden (Flüssigkeiten und Gase) wird die Laser-Doppler-Anemometrie (LDA) angewandt. Eine andere Anwendung, die Laser-Doppler-Vibrometrie (LDV), betrifft die Messung der Schwingschnelle von Oberflächen. Hier wird die durch die Oberflächenbewegung hervorgerufene Frequenzverschiebung eines am Messpunkt reflektierten Laserstrahls zur Bestimmung der Schwingschnelle an diesem Messpunkt herangezogen.

Sonstige Anwendungen

  • Für Wasserwellen (Schwerewellen), deren Trägermedium einer konstanten Strömungsgeschwindigkeit unterliegt, siehe unter Wellentransformation.
  • Das mittlerweile abgeschaltete Satellitennavigations-System Transit nutzte den Dopplereffekt zur Positionsbestimmung. Aktiv eingesetzt wird er bei Argos, einem satellitengestützten System zur Positionsbestimmung. Bei modernen GNSS-Satelliten ist der Dopplereffekt zunächst störend. Er zwingt die Empfänger, einen größeren Frequenzbereich abzusuchen. Andererseits lassen sich aus der Frequenzverschiebung Zusatzinformationen gewinnen und so die Grobpositionierung beschleunigen. Das Verfahren heißt Doppler-Aiding. Siehe auch: Dopplersatellit.
  • In der Musik wird der Dopplereffekt zur Erzeugung von Klangeffekten verwendet, beispielsweise bei den rotierenden Lautsprechern eines Leslie-Kabinetts.
  • Bei der Mößbauer-Spektroskopie wird der Doppler-Effekt einer bewegten Gammastrahlungsquelle verwendet, um die Energie der Photonen dieser Quelle minimal zu verändern. Hierdurch können diese Photonen in Wechselwirkung mit den Kernhyperfeinniveaus eines entsprechenden Absorbers treten.

Beispiel

Abhängigkeit der Frequenz einer Signalquelle von der Entfernung zu einem ruhenden Beobachter für verschiedene Minimalabstände.

Ein ruhender Beobachter hört eine Schallquelle, die sich genau auf ihn zu bewegt, mit der Frequenz f'zu(v/c), siehe Gleichung (1), wenn sie sich von ihm entfernt, mit der Frequenz f'weg(v/c), siehe Gleichung (2). Bei Schallquellen spielt der relativistische transversale Dopplereffekt keine Rolle. Je weiter der Beobachter von der linearen Flugbahn entfernt ist, desto langsamer ändert sich die radiale Geschwindigkeitskomponente bei Annäherung. Die Schnelligkeit der Frequenzänderung hängt ab von der kürzesten Entfernung zwischen Beobachter und Signalquelle. Das Diagramm rechts zeigt die Frequenzabhängigkeit relativ zu einem im Ursprung ruhenden Beobachter. Die rote Linie entspricht der Frequenz, die er hört, wenn ihn die Signalquelle in großem Abstand passiert, blau der bei geringem Abstand. Maximal- und Minimal-Frequenzen liegen nicht symmetrisch zur Eigenfrequenz, da die Geschwindigkeit v nicht sehr viel kleiner ist als die Schallgeschwindigkeit c. Es gelten die Beziehungen (1) und (2).

Sind die Koordinaten der bewegten Signalquelle bekannt, kann man aus dem Frequenzverlauf den eigenen Standort ableiten (siehe z.B. Transit (Satellitensystem)).

Die Tonbeispiele geben die Tonhöhen, die ein ruhender Beobachter hört, wenn eine Signalquelle an ihm vorbeifliegt. Sie vernachlässigen den Effekt, dass die sich entfernende Quelle länger zu hören ist als die sich nähernde:

Frequenz f0 = 400 Hz, relative Geschwindigkeit v/c = 0,1 (dann ist fzu_max = 440 Hz und fweg_min = 360 Hz):
(1) Doppler-Beispiel 1?/i Langsam bewegte Signalquelle, die Beobachter in geringem Abstand passiert.
(2) Doppler-Beispiel 2?/i: wie (1), aber Passieren der Signalquelle in größerem Abstand.
(3) Doppler-Beispiel 3?/i: wie (2), Abstand noch größer.

Erhöht sich die relative Geschwindigkeit, verschieben sich die Frequenzen:

Frequenz wie oben, aber v/c = 0,42 (dann ist fzu_max = 690 Hz, fweg_min = 280 Hz).
(4) Doppler-Beispiel 2b?/i: Abstand wie (2).

Trivial

  • In einer Folge von "The Big Bang Theory" trägt die Figur Dr. Dr. Sheldon Lee Cooper (gespielt von Jim Parsons) ein hautenges Halloween-Kostüm, das den Dopplereffekt darstellen soll. Mehrfach erläutert er bei Unverständnis das Prinzip des Dopplereffekts seinen Mitmenschen und damit auch dem Zuschauer.

Siehe auch

Einzelnachweise

  1. Spezielle Relativitätstheorie, Argumentationen zur Herleitung der wichtigsten Aussagen, Effekte und Strukturen, Franz Embacher, Universität Wien.

Weblinks

Wiktionary Wiktionary: Dopplereffekt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Doppler-Effekt – Album mit Bildern und/oder Videos und Audiodateien

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Dopplereffekt — is an electronic music act which has been active since at least 1995 (year of first release). It is named after the German word for the Doppler effect. While the musical style and the act s image changed radically during a non release period from …   Wikipedia

  • Dopplereffekt — est un groupe de musique électronique américain de Detroit assimilé aux genres electro et techno de Detroit. Ce groupe a produit sur différents labels, dont Dataphysix Engineering, leur propre structure (active entre 1995 et 1997). Les… …   Wikipédia en Français

  • Dopplereffekt — Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Dopplereffekt — Dọpp|ler|ef|fekt auch: Dọpp|ler Ef|fekt 〈m. 1; unz.〉 die Tatsache, dass ein relativ zu einer Schall od. Lichtquelle bewegter Beobachter mehr od. weniger Schwingungen pro Zeiteinheit empfängt, je nachdem, ob er sich von dieser entfernt od. sich… …   Universal-Lexikon

  • Dopplereffekt — Dopp|ler|ef|fekt der; [e]s <nach dem österr. Physiker u. Mathematiker Chr. Doppler (1803 1853) u. zu ↑Effekt> Frequenzänderung je nach der abnehmenden od. zunehmenden Entfernung eines Erzeugers von Schall od. Lichtwellen (Phys.) …   Das große Fremdwörterbuch

  • dopplereffekt — dop|pler|ef|fekt sb., en, er, erne (FYSIK et frekvensfænomen) …   Dansk ordbog

  • dopplereffekt — s ( en) FYSIK förskjutning i vågrörelses frekvens då en observatör närmar el. avlägsnar sig t.ex. ljudkällan …   Clue 9 Svensk Ordbok

  • Dopplereffekt — D✓Dọpp|ler|ef|fekt, Dọpp|ler Ef|fekt, der; [e]s <nach dem österreichischen Physiker> (ein physikalisches Prinzip) …   Die deutsche Rechtschreibung

  • Dopplereffekt (Band) — Die Band Dopplereffekt trat Mitte der 1990er Jahre in Detroit, Michigan zum ersten Mal in Erscheinung und ist ein wichtiger und einflussreicher Vertreter der Electro Szene. Geschichte und Stil Initiiert wurde das Musik Projekt durch Gerald Donald …   Deutsch Wikipedia

  • Optischer Dopplereffekt — Frequenzänderung durch Dopplereffekt Frequenzänderung bei einem sich bewegenden Objekt Als Dopplereffekt (auch Doppler Effekt) bezeichnet man die Veränderung der wahrgenommenen oder gemessenen …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.