Definitheit

Definitheit

Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.

Inhaltsverzeichnis

Definitheit von Bilinearformen und Sesquilinearformen

Es sei V ein Vektorraum über den reellen (oder komplexen) Zahlen.

Eine symmetrische Bilinearform \langle{\cdot}, {\cdot}\rangle\colon V\times V\to\mathbb R (beziehungsweise eine hermitesche Sesquilinearform \langle{\cdot}, {\cdot}\rangle\colon V\times V\to \mathbb{C}) heißt

positiv definit, falls \langle v,v\rangle>0
positiv semidefinit, falls \langle v,v\rangle\geq0
negativ definit, falls \langle v,v\rangle<0
negativ semidefinit, falls \langle v,v\rangle\leq0

jeweils für alle v\in V, v\not=0, gilt. Man beachte, dass auch im komplexen Fall wegen der geforderten Hermiteizität \langle v,v\rangle stets reell ist.
Trifft keine dieser Bedingungen zu, heißt die Form indefinit. Genau in diesem Fall nimmt \langle v,v\rangle sowohl positive als auch negative Werte an.

Die obigen Bedingungen bedeuten also, dass die zugehörige quadratische Form Q(v) := \langle v,v\rangle positiv definit, positiv semidefinit, negativ definit, negativ semidefinit bzw. indefinit ist.

Gelegentlich werden diese Begriffe im reellen Fall auch für beliebige, nicht notwendig symmetrische Bilinearformen eingeführt. (Im komplexen Fall müsste man zusätzlich fordern, dass für alle v\in V der Wert \langle v,v\rangle reell ist. Daraus folgt jedoch schon, dass die Sesquilinearform hermitesch ist.)

Eine positiv definite symmetrische Bilinearform (bzw. hermitesche Sesquilinearform) heißt Skalarprodukt. Beispielsweise ist das Standard-Skalarprodukt auf dem \R^n (bzw. \mathbb C^n) positiv definit.

Definitheit von Matrizen

Jede quadratische Matrix beschreibt eine Bilinearform auf V = \R^n (bzw. eine Sesquilinearform auf V = \C^n). Man nennt eine quadratische Matrix deshalb positiv definit, wenn diese Eigenschaft auf die durch die Matrix definierte Bilinearform bzw. Sesquilinearform zutrifft. Entsprechend definiert man auch die anderen Eigenschaften. Dies bedeutet: Eine beliebige (ggf. symmetrische bzw. hermitesche) (n\times n)-Matrix A ist

positiv definit, falls xTAx > 0
positiv semidefinit, falls x^TAx \geq 0
negativ definit, falls xTAx < 0
negativ semidefinit, falls x^TAx \leq 0

für alle n-zeiligen Spaltenvektoren x \neq 0.

Im komplexen Fall muss der Vektor x auf der linken Seite zum Zeilenvektor transponiert und zusätzlich komplex-konjugiert werden (hermitesch Adjungiertes, x^*\; = \overline x^T statt lediglich x^T\;). Damit die Ungleichungen einen Sinn ergeben, muss die linke Seite für jedes mögliche x reell sein. Dies ist genau dann der Fall, wenn die Matrix A hermitesch ist.

Eine Matrix, die weder positiv noch negativ semidefinit ist, nennt man „indefinit“. Genau dann nimmt x^TAx\; (bzw. x^*Ax\;) sowohl positive als auch negative Werte an.

Es gibt daneben weitere äquivalente Definitionen von Definitheit.

Symmetrischer Anteil

Eine reelle quadratische Matrix A ist genau dann positiv definit, wenn ihr symmetrischer Teil

 A_S = \frac{1}{2} \left(A + A^T\right)

positiv definit ist. Entsprechendes gilt für „negativ definit“ und „positiv“ bzw. „negativ semidefinit“.

Bei komplexen Matrizen A ist die Situation völlig anders. Man kann für jede komplexe Matrix A den hermiteschen Anteil  A_H = \tfrac{1}{2}\left(A + A^*\right) und den schiefhermiteschen Anteil  A_{SH} = \tfrac{1}{2}\left(A - A^*\right) betrachten.

Die Matrix  A_K =\tfrac1i{A_{SH}} ist dann hermitesch, es gilt A = AH + iAK und A * = AHiAK. A ist genau dann positiv definit, wenn der schiefhermitesche Anteil ASH gleich 0 und der hermitesche Anteil AH, der demzufolge mit A übereinstimmt, positiv definit ist.

Eigenwerte

Eine quadratische symmetrische (bzw. hermitesche) Matrix ist genau dann

positiv definit, falls alle Eigenwerte größer als Null sind;
positiv semidefinit, falls alle Eigenwerte größer oder gleich Null sind;
negativ definit, falls alle Eigenwerte kleiner als Null sind;
negativ semidefinit, falls alle Eigenwerte kleiner oder gleich Null sind und
indefinit, falls positive und negative Eigenwerte existieren.

Damit kann jedes Verfahren zur Bestimmung oder Abschätzung von Eigenwerten benutzt werden, um die Definitheit der Matrix zu bestimmen. Eine Möglichkeit sind die Gerschgorin-Kreise, die es erlauben das Spektrum zumindest abzuschätzen. Dies reicht häufig schon aus, um die Definitheit zu bestimmen. Die Gerschgorin-Kreise geben anhand der Einträge der Matrix Mengen in der komplexen Ebene an, in denen die Eigenwerte enthalten sind, im Falle von symmetrischen Matrizen Intervalle auf der reellen Achse. Damit ist es manchmal einfach möglich, die Definitheit einer Matrix zu bestimmen. Einzelheiten hierzu, insbesondere über die Signatur von symmetrischen Bilinearformen und Matrizen, siehe Trägheitssatz von Sylvester.

Hauptminoren

Eine symmetrische bzw. hermitesche Matrix A ist genau dann positiv definit, wenn alle Hauptminoren von A positiv sind. Entsprechend ist A negativ definit, falls alle Hauptminoren von A positiv sind. A ist also genau dann negativ definit, falls die Vorzeichen der Hauptminoren alternieren, das heißt, falls alle ungeraden Hauptminoren negativ sind und alle geraden positiv.

Bemerkungen
  • Für Semidefinitheit gibt es kein Hauptminorenkriterium.[1]
  • Für nicht-hermitesche Matrizen gilt das Kriterium nicht. Ein Beispiel dafür ist die indefinite Matrix \left(\begin{smallmatrix}1 & -1\\ 2 & -1\end{smallmatrix}\right), deren Hauptminoren alle positiv sind.
  • Das Kriterium wird auch oft Sylvester-Kriterium genannt. Vereinzelt wird auch die Bezeichnung „Hurwitz-Kriterium“ verwendet, obwohl sich dieses ursprünglich nur auf Hurwitz-Matrizen bezog.

Gaußsches Eliminationsverfahren

Eine reelle symmetrische quadratische Matrix A=(a_{i,k})_{i,k=1}^n ist genau dann positiv definit, wenn das Gaußsche Eliminationsverfahren bei Diagonalstrategie, das heißt ohne Zeilenvertauschungen, mit n positiven Pivotelementen durchgeführt werden kann. Diese Bedingung eignet sich vor allem für Fälle, in denen sowieso das Gauß-Verfahren angewandt werden muss.

Cholesky-Zerlegung

Eine symmetrische Matrix A ist genau dann positiv definit, wenn es eine Cholesky-Zerlegung A = GGT gibt, wobei G eine reguläre untere Dreiecksmatrix ist.

Bedeutung

  • Die Einschränkung einer positiv definiten Bilinear- bzw. Sesquilinearform auf einen Unterraum ist wieder positiv definit, insbesondere also nicht ausgeartet. Diese Tatsache ermöglicht die Zerlegung eines Raumes in einen Unterraum und dessen orthogonales Komplement.
  • Definitheit spielt bei der Untersuchung von kritischen Stellen einer Funktion f\colon\R^n\to\R, also der Extremwertberechnung, eine entscheidende Rolle.

Einzelnachweise

  1. IEEE: On Sylvester's Criterion for Positive-Semidefinite Matrices, Transaction on automatic control, Juni 1973, englisch

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Definitheit — Definitheit,   Eigenschaft eines mathematischen Terms, stets das gleiche Vorzeichen zu besitzen. In einem Hilbert Raum H nennt man einen hermiteschen Operator A mit dem Definitionsbereich DA positiv …   Universal-Lexikon

  • Definitheit (Linguistik) — Definitheit (auch Determination genannt) ist eine Kategorie der Allgemeinen Linguistik. Sie beschreibt die Aktualisierung von Referenz. Eine Referenz (Beziehung zwischen einem Wort oder sprachlichen Ausdruck und einem Objekt der realen Welt) ist… …   Deutsch Wikipedia

  • Definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Negativ definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv definite Matrix — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv semidefinit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv semidefinite Matrix — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Semidefinit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Sylvester-Kriterium — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”