Computational Fluid Dynamics

Computational Fluid Dynamics

Die numerische Strömungsmechanik (englisch: computational fluid dynamics, CFD) ist eine etablierte Methode der Strömungsmechanik. Sie hat das Ziel, strömungsmechanische Probleme approximativ mit numerischen Methoden zu lösen. Die benutzten Modellgleichungen sind meist die Navier-Stokes-Gleichungen, die Euler-Gleichungen oder die Potentialgleichungen. Die Motivation hierzu ist, dass wichtige Probleme wie die Berechnung des Widerstandsbeiwerts sehr schnell zu nichtlinearen Problemen führen, die nur in Spezialfällen exakt lösbar sind. Die numerische Strömungsmechanik bietet dann eine kostengünstige Alternative zu Windkanal-Versuchen.

Die international gebräuchliche Abkürzung CFD wird etwa seit einer Konferenz der AIAA 1973 benutzt. Dort wurde auch die Verwendung von CFD als Werkzeug zum Design von Flugzeugen etabliert.

Inhaltsverzeichnis

Modelle

Das umfassendste Modell sind die Navier-Stokes-Gleichungen. Es handelt sich hierbei um ein System von nichtlinearen partiellen Differentialgleichungen 2. Ordnung, die die meisten Fluide komplett beschreiben. Insbesondere sind auch Turbulenz und die hydrodynamische Grenzschicht enthalten, was allerdings zu höchsten Ansprüchen an Rechnerleistung, Speicher und die numerischen Verfahren führt.

Ein einfacheres Modell sind die Euler-Gleichungen, die aufgrund der vernachlässigten Reibung die Grenzschicht nicht abbilden und auch keine Turbulenz enthalten, womit beispielsweise Strömungsabriss nicht über dieses Modell simuliert werden kann. Dafür sind wesentlich gröbere Gitter geeignet um die Gleichungen sinnvoll zu lösen. Für diejenigen Teile der Strömung, in denen die Grenzschicht keine wesentliche Rolle spielt, sind die Euler-Gleichungen sehr gut geeignet.

Die Potentialgleichungen schließlich sind vor allem nützlich, wenn schnell grobe Vorhersagen gemacht werden sollen. Bei ihnen wird die Entropie als konstant vorausgesetzt, was bedeutet dass keine starken Schockwellen auftreten können, da an diesen die Entropie sogar unstetig ist. Weitere Vereinfachung über konstante Dichte führt dann zur Laplace-Gleichung.

Bei Mehrphasenströmungen spielen Wechselwirkungskräfte zwischen den Phasen eine Rolle, wobei geeignete Vereinfachungen durchgeführt werden können.

CFD-Verfahren bilden auch die Grundlage für die Numerische Aeroakustik, die sich mit der Berechnung von Strömungsgeräuschen befasst.

Verfahren

Die verbreitetsten Lösungsmethoden der numerischen Strömungsmechanik sind

Die FEM ist für viele Probleme geeignet, insbesondere elliptische und parabolische im inkompressiblen Bereich, weniger für hyperbolische. Sie zeichnet sich durch Robustheit und solide mathematische Untermauerung aus. FVM ist für Erhaltungsgleichungen geeignet, insbesondere für kompressible Strömungen. FDM ist sehr einfach und deswegen vor allem von theoretischem Interesse.

Weitere sind

Bei allen Methoden handelt es sich um numerische Näherungsverfahren, die zur Validierung mit quantitativen Experimenten verglichen werden müssen. Die Basis der oben genannten Methoden ist die Diskretisierung des Problems mit einem Rechengitter (Ausnahme: Partikelmethoden wie SPH).

Bei zeitabhängigen Gleichungen führt die Reihenfolge von Orts- und Zeitdiskretisierung auf zwei verschiedene Lösungsansätze:

  • Vertikale Linienmethode: Hier wird zunächst im Ort diskretisiert, sodass man ein System von gewöhnlichen Differentialgleichungen in der Zeit erhält.
  • Rothe-Methode (oder horizontale Linienmethode): Die Zeitdiskretisierung erfolgt zuerst, und die Gleichungen reduzieren sich auf die Lösung eines Randwertproblems in jedem Zeitschritt.

Die erste Methode wird vor allem bei hyperbolischen Gleichungen und kompressiblen Strömungen, letztere bei inkompressiblen Strömungen eingesetzt. Außerdem ist die Rothe-Methode flexibler im Hinblick auf eine Implementierung einer adaptiven Gitterverfeinerung im Ort während der Zeitevolution der Strömungsgleichungen.

Bei turbulenten Strömungen gibt es für die numerische Strömungssimulation noch viele offene Fragen: Entweder man verwendet sehr feine Rechengitter wie bei der direkten numerischen Simulation oder man verwendet mehr oder weniger empirische Turbulenzmodelle, bei denen neben numerischen Fehlern zusätzliche Modellierungsfehler auftreten. Einfache Probleme können auf Highend-PCs in Minuten gelöst werden, während komplexe 3D-Probleme selbst auf Großrechnern teilweise kaum zu lösen sind.

Software

Für Codes siehe die einzelnen Artikel zu den Verfahren oder eine dieser Übersichten:

Literatur

  • P. Wesseling: Principles of Computational Fluid Dynamics, 2000, Springer Verlag.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Computational fluid dynamics — Computational physics Numerical analysis  …   Wikipedia

  • Computational Fluid Dynamics — Simulation informatique des flux d air à haute vitesse autour d une navette spatiale pendant l atterrissage. CFD est l acronyme anglais de « Computational Fluid Dynamics », qui peut se traduire en français par la locution… …   Wikipédia en Français

  • Computational fluid dynamics — Simulation informatique des flux d air à haute vitesse autour d une navette spatiale pendant l atterrissage. CFD est l acronyme anglais de « Computational Fluid Dynamics », qui peut se traduire en français par la locution… …   Wikipédia en Français

  • Fluid dynamics — Continuum mechanics …   Wikipedia

  • Circulation (fluid dynamics) — In fluid dynamics, circulation is the line integral around a closed curve of the fluid velocity. Circulation is normally denoted . If is the fluid velocity on a small element of a defined curve, and is a vector representing the differential… …   Wikipedia

  • Euler equations (fluid dynamics) — In fluid dynamics, the Euler equations govern inviscid flow. They correspond to the Navier Stokes equations with zero viscosity and heat conduction terms. They are usually written in the conservation form shown below to emphasize that they… …   Wikipedia

  • Computational magnetohydrodynamics — (CMHD) is a rapidly developing branch of magnetohydrodynamics that uses numerical methods and algorithms to solve and analyze problems that involve electrically conducting fluids. Most of the methods used in CMHD are borrowed from the well… …   Wikipedia

  • Computational Magnetohydrodynamics — (CMHD) is a rapidly developing branch of Magnetohydrodynamics that uses numerical methods and algorithms to solve and analyze problems that involve electrically conducting fluids. Most of the methods used in CMHD are borrowed from the well… …   Wikipedia

  • Fluid-structure interaction — (FSI) occurs when a fluid interacts with a solid structure, exerting pressure on it which may cause deformation in the structure and thus alter the flow of the fluid itself. Such interactions may be stable or oscillatory, and are a crucial… …   Wikipedia

  • Dynamics — (from Greek δυναμικός dynamikos powerful , from δύναμις dynamis power ) may refer to: Contents 1 Physics and engineering 2 Sociology and psychology 3 Computer science and mathematics …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”