Statistische Mechanik

Statistische Mechanik

Die Statistische Mechanik war ursprünglich ein Anwendungsgebiet der Mechanik. Heutzutage wird der Begriff oft synonym zur statistischen Physik und zur statistischen Thermodynamik gebraucht und steht somit für die (theoretische und experimentelle) Analyse zahlreicher, fundamentaler Eigenschaften von Systemen vieler Teilchen (Atome, Moleküle, usw.). Unter anderem liefert die Statistische Mechanik eine mikroskopische Fundierung der Thermodynamik. Sie ist daher von großer Bedeutung für die Chemie, insbesondere für die Physikalische Chemie, in der man auch von Statistischer Thermodynamik spricht.

Darüber hinaus beschreibt sie eine Vielzahl weiterer thermischer Gleichgewichts- und Nichtgleichgewichtseigenschaften, die mit Hilfe moderner Messmethoden (z. B. Streuexperimente) untersucht werden.

In der (ursprünglichen) Statistischen Mechanik wird der Zustand eines physikalischen Systems nicht mehr durch die genauen „Trajektorien“, d. h. durch den genauen zeitlichen Verlauf von Ort und Impuls, der einzelnen Teilchen, bzw. deren reinen quantenmechanischen Zustand charakterisiert, sondern durch die Wahrscheinlichkeit, derartige mikroskopische Zustände vorzufinden.

Die Statistische Mechanik ist vor allem durch Arbeiten von James Clerk Maxwell, Ludwig Boltzmann und Josiah Willard Gibbs entstanden, wobei letzterer den Begriff prägte. Im Folgenden sollen einige Begriffe aus der Statistischen Physik erläutert werden, die insbesondere bei der Analyse von Eigenschaften des thermischen Gleichgewichts eine wichtige Rolle spielen.

Historisch von zentraler Bedeutung ist die Boltzmann’sche Entropieformel (die auch auf dem Grabstein von Ludwig Boltzmann eingraviert ist):

S = k_B~\ln~\Omega.

Hier bezeichnet S die (statistische) Entropie eines abgeschlossenen Systems, d. h. eines mikrokanonischen Ensembles. Die Größe Ω gibt die Zahl der Mikrozustände an (z. B. Orte und Impulse aller Teilchen in einem Gas), die mit den thermodynamischen Zustandsgrößen Energie, Volumen und Teilchenzahl verträglich sind (Boltzmann bezeichnete diese Größe als „Komplexionzahl“ gleich dem statistischem Gewicht, manchmal auch als W angegeben, des makroskopischen Zustands). Die Konstante kB wird als Boltzmannkonstante bezeichnet und hat wie die Entropie die Einheit Joule durch Kelvin.

Es wird also berücksichtigt, dass nicht ein einzelner mikroskopischer Zustand, sondern vielmehr alle möglichen Zustände das makroskopische Verhalten eines physikalischen Systems bestimmen. Statistische Ensembles spielen in der Statistischen Physik eine entscheidende Rolle; man unterscheidet zwischen dem mikrokanonischen, dem kanonischen und dem großkanonischen Ensemble.

Ein klassisches und einfaches Beispiel für die Anwendung der Statistischen Mechanik ist die Herleitung der Zustandsgleichung des idealen Gases und auch des Van-der-Waals-Gases.

Sind Quanteneigenschaften (Ununterscheidbarkeit der Teilchen) wesentlich, z. B. bei tiefen Temperaturen, können besondere Phänomene auftreten und von der Statistischen Physik vorhergesagt werden. Für Systeme mit ganzzahligem Spin (Bosonen) gilt die Bose-Einstein-Statistik. Unterhalb einer kritischen Temperatur und bei hinreichend schwachen Wechselwirkungen zwischen den Teilchen tritt ein besonderer Effekt auf, bei dem eine Vielzahl von Teilchen den Zustand niedrigster Energie einnehmen: Es gibt eine Bosekondensation.

Systeme mit halbzahligem Spin (Fermionen) gehorchen der Fermi-Dirac-Statistik. Wegen des Pauli-Prinzips werden auch Zustände höherer Energie angenommen. Es gibt eine charakteristische obere „Energiekante“, die Fermienergie. Sie bestimmt u. a. zahlreiche thermische Eigenschaften von Metallen und Halbleitern.

Die Konzepte der Statistischen Mechanik lassen sich nicht nur auf Ort und Impuls der Teilchen, sondern auch auf andere, z.  B. magnetische Eigenschaften anwenden. Hierbei ist die Modellbildung von großer Bedeutung; z. B. sei auf das ausführlich untersuchte Ising-Modell hingewiesen.

Literatur

Grundlagen

Lehrbücher

  • Arieh Ben-Naim: Statistical Thermodynamics Based on Information: A Farewell to Entropy. 2008, ISBN 978-981-270-707-9.
  • D. Chandler: Introduction to Modern Statistical Mechanics. 1. Aufl., Oxford University Press, 1987, ISBN 0-19-504277-8.
  • Torsten Fließbach: Lehrbuch zur Theoretischen Physik: Statistische Physik., 2006, ISBN 978-3-8274-1684-1.
  • R. Hentschke: Statistische Mechanik. 1. Aufl., Wiley-VCH, 2004, ISBN 3-527-40450-3.
  • Wolfgang Nolting, Grundkurs Theoretische Physik 6: Statistische Physik. 2005, ISBN 3-540-20505-5.

Populärwissenschaftliche Literatur

Einführungen in philosophische Themenfelder

  • L. Sklar: Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: CUP 1993.
  • D. Albert: Time and Chance. Cambridge, MA: Harvard University Press 2000.
  • P. Ehrenfest, T. Ehrenfest: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca, NY 1959.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • statistische Mechanik — statịstische Mechanik,   eine besonders auf L. Boltzmann, J. W. Gibbs und R. J. E. Clausius zurückgehende physikalische Theorie, die aus dem Bestreben entstand, die Gesetze der Gase und der Thermodynamik (v. a. den 2. Hauptsatz) mithilfe der… …   Universal-Lexikon

  • statistische Mechanik — statistinė mechanika statusas T sritis fizika atitikmenys: angl. statistical mechanics vok. statistische Mechanik, f rus. статистическая механика, f pranc. mécanique statistique, f …   Fizikos terminų žodynas

  • statistische Physik — statịstische Physik,   Sammelbegriff für die Teilgebiete der Physik, die mithilfe statistischer Methoden die makroskopischen Eigenschaften von Materie aus den mikroskopischen Gesetzmäßigkeiten ihrer Bausteine (z. B. auf atomarer und molekularer… …   Universal-Lexikon

  • Mechanik — Die Mechanik ist ein Teilgebiet der Physik. Sie befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. In der Kinematik befasst sie sich aufbauend auf den Begriffen von Zeit, Länge, Geschwindigkeit und Beschleunigung mit der… …   Deutsch Wikipedia

  • Mechanik — Me|cha|nik [me ça:nɪk], die; : a) Teil der Physik, der sich mit den Bewegungen der Körper und den Beziehungen der dadurch entstehenden Kräfte befasst: diese Maschine ist ein Wunder der Mechanik. Zus.: Aeromechanik, Biomechanik, Elektromechanik,… …   Universal-Lexikon

  • Statistische Physik — Die Statistische Physik beschäftigt sich mit der Beschreibung von Naturphänomenen, bei denen zwar eine große Anzahl an Teilsystemen (z. B. Teilchen) beteiligt ist, aber nur Aussagen über die Gesamtheit interessieren oder grundsätzlich nur… …   Deutsch Wikipedia

  • 1. Hauptsatz der Thermodynamik — Die Thermodynamik, die auch als Wärmelehre bezeichnet wird, ist ein Teilgebiet der klassischen Physik. Sie ist die Lehre der Energie, ihrer Erscheinungsformen und Fähigkeit, Arbeit zu verrichten. Sie erweist sich als vielseitig anwendbar in der… …   Deutsch Wikipedia

  • 2. Hauptsatz der Thermodynamik — Die Thermodynamik, die auch als Wärmelehre bezeichnet wird, ist ein Teilgebiet der klassischen Physik. Sie ist die Lehre der Energie, ihrer Erscheinungsformen und Fähigkeit, Arbeit zu verrichten. Sie erweist sich als vielseitig anwendbar in der… …   Deutsch Wikipedia

  • 3. Hauptsatz der Thermodynamik — Die Thermodynamik, die auch als Wärmelehre bezeichnet wird, ist ein Teilgebiet der klassischen Physik. Sie ist die Lehre der Energie, ihrer Erscheinungsformen und Fähigkeit, Arbeit zu verrichten. Sie erweist sich als vielseitig anwendbar in der… …   Deutsch Wikipedia

  • Erster Hauptsatz der Thermodynamik — Die Thermodynamik, die auch als Wärmelehre bezeichnet wird, ist ein Teilgebiet der klassischen Physik. Sie ist die Lehre der Energie, ihrer Erscheinungsformen und Fähigkeit, Arbeit zu verrichten. Sie erweist sich als vielseitig anwendbar in der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”