Partielle Ableitung

Partielle Ableitung

In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente.

Inhaltsverzeichnis

Definition

Sei U eine offene Teilmenge des euklidischen Raums \R^n, und f: U\rightarrow \R eine Funktion. Sei weiterhin ein Element a=(a_1, \ldots, a_n) in U gegeben. Falls für die natürliche Zahl i mit 1 \leq i \leq n der folgende Grenzwert existiert:


 \frac{\partial f}{\partial x_i}(a) :=
 \lim_{h\to 0} \frac{f(a_1,\ldots,a_i+h,\ldots,a_n)
   - f(a_1,\ldots,a_i,\ldots,a_n)}{h}

dann nennt man ihn die partielle Ableitung von f nach der i-ten Variablen xi im Punkt a. Die Funktion f heißt dann im Punkt a partiell differenzierbar. Das Symbol ∂ (es ähnelt dem kursiven Schnitt der kyrillischen Minuskel д) wird als d oder zur Unterscheidung auch del ausgesprochen. Die Schreibweise \textstyle\frac{\partial f}{\partial x_i} wurde durch Verwendung von C. G. J. Jacobi bekannt.[1]

Die partielle Ableitung nach xi ist selbst wieder eine Funktion von U nach \R, falls f in ganz U nach xi partiell differenzierbar ist. Den Vektor


 \text{grad}\, f = \nabla f:=
 \left(\frac{\partial f}{\partial x_1}, \ldots,
 \frac{\partial f}{\partial x_n} \right)^T

nennt man den Gradienten von f. Das Symbol \nabla wird Nabla genannt. Als abkürzende Schreibweise ist auch oft \textstyle f_x=\frac{\partial f}{\partial x} oder \textstyle\partial_x f=\frac{\partial f}{\partial x} zu finden.

Zusammenhang Ableitung, partielle Ableitung, Stetigkeit

  • Total differenzierbare Funktionen sind stetig.
  • Total differenzierbare Funktionen sind partiell differenzierbar.
  • Partiell differenzierbare Funktionen sind nicht notwendigerweise stetig und dann auch nicht total differenzierbar.
  • Stetig partiell differenzierbare Funktionen, also Funktionen, deren partielle Ableitungen stetig sind, sind dagegen stetig total differenzierbar.

Höhere partielle Ableitungen

Ist die Funktion f \colon U \to \R in jedem Punkt ihres Definitionsbereichs partiell differenzierbar, so sind die partiellen Ableitungen

\frac{\partial f}{\partial x_i} \colon a \mapsto \frac{\partial f}{\partial x_i}(a)

wieder Funktionen von U nach \R, die wiederum auf Differenzierbarkeit untersucht werden können. Man erhält so höhere partielle Ableitungen

\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial }{\partial x_j}\left(\frac{\partial f}{\partial x_i}\right)   und   \frac{\partial^2 f}{\partial x_i^2 } = \frac{\partial }{\partial x_i}\left(\frac{\partial f}{\partial x_i}\right)

Eigenschaften

  • Es gilt der Satz von Schwarz: Wenn die zweiten partiellen Ableitungen stetig sind, so kann man die Reihenfolge der Ableitung vertauschen:
    \frac{\partial^2 f}{\partial x_j \partial x_i} =\frac{\partial^2 f}{\partial x_i \partial x_j}\,.
  • Die zweiten partiellen Ableitungen lassen sich in einer Matrix anordnen, der Hessematrix
    
\operatorname{H}_f=
\left(\frac{\partial^2f}{\partial x_i\partial x_j}\right)=
\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1\partial x_1}&\dots&\frac{\partial^2  f}{\partial x_1\partial x_n}\\
\vdots&\ddots&\vdots\\
\frac{\partial^2 f}{\partial x_n\partial x_1}&\dots&\frac{\partial^2  f}{\partial x_n\partial x_n}
\end{pmatrix}
  • Es gilt die Taylorformel: Wenn die Funktion f\colon U \to \R k-mal stetig partiell differenzierbar ist, so lässt sie sich in der Nähe jedes Punktes a = (a_1, \dots, a_n) \in U durch ihre Taylor-Polynome approximieren:
f(a + h) = \sum_{s =0}^k\,\sum_{j_1 + \dots + j_n =s} \frac{1}{j_1! \cdots j_n!}\,\frac{\partial^{s}f}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}}(a) \, h_1^{j_1} \cdots h_n^{j_n} + r(a,h)
mit h = (h_1, \dots, h_n), wobei das Restglied r(a,h) für |h| \to 0 von höherer als k-ter Ordnung verschwindet, das heißt:
\lim_{|h| \to 0} \frac{|r(a,h)|}{|h|^k} = 0.
Die Terme zu gegebenem ν ergeben die „Taylorapproximation k-ter Ordnung“.

Verwendung

Partielle Ableitungen ermöglichen die Berechnung einer Lösung für Probleme, die von mehreren Parametern abhängen.

Einfache Extremwertprobleme findet man in der Analysis bei der Berechnung von Maxima und Minima einer Funktion einer reellen Variablen (vgl. hierzu den Artikel über Differentialrechnung). Die Verallgemeinerung des Differentialquotienten auf Funktionen mehrerer Variablen (Veränderlichen, Parameter) ermöglicht die Bestimmung ihrer Extremwerte, und für die Berechnung werden partielle Ableitungen benötigt.

In der Differentialgeometrie benötigt man partielle Ableitungen zur Bestimmung eines totalen Differentials. Anwendungen für totale Differentiale findet man in großem Maße in der Thermodynamik.

Partielle Ableitungen sind darüber hinaus ein wesentlicher Bestandteil der Vektoranalysis. Sie bilden die Komponenten des Gradienten, des Laplace-Operators, der Divergenz und der Rotation in Skalar- und Vektorfeldern. Sie treten auch in der Jacobi-Matrix auf.

Beispiele

Beispiel 1

Als Beispiel wird die Funktion f\colon\R^2\rightarrow\R mit f(x,y): = x2 + y2 betrachtet, die von den beiden Variablen x und y abhängt.

Betrachtet man y als eine Konstante, z. B. y = 3, so hängt die Funktion g\colon\R\rightarrow\R mit g(x) = f(x,3) nur noch von der Variablen x ab:

f(x,3) = x2 + 9

Für die neue Funktion gilt folglich g(x) = x2 + 9 und man kann den Differenzialquotienten bilden

\frac{\mathrm{d}g(x)}{\mathrm{d}x} = \lim_{h \to 0}\frac{g(x+h) - g(x)}{h} = g'(x) = 2 \cdot x

Das gleiche Ergebnis erhält man, wenn man die partielle Ableitung der Funktion f nach x bildet:

\frac{\partial f(x,y)}{\partial x} = f_x = \lim_{h \to 0}\frac{f(x+h,y) - f(x,y)}{h} = 2 \cdot x

Die partielle Ableitung von f nach y lautet entsprechend:

\frac{\partial f(x,y)}{\partial y} = f_y = \lim_{h \to 0}\frac{f(x,y + h) - f(x,y)}{h} = 2 \cdot y

Dieses Beispiel demonstriert, wie die partielle Ableitung einer Funktion bestimmt wird, die von mehreren Variablen abhängt:

Bis auf eine Variable werden alle anderen Variablen als konstant angenommen, bezüglich dieser einen Variablen wird der Differenzialquotient bestimmt. Als Ergebnis erhält man die partielle Ableitung der Funktion nach dieser einen Variablen.

Beispiel 2

Das folgende Beispiel gibt eine geometrische Deutung der partiellen Ableitung:

In einem dreidimensionalen Koordinatensystem wird der Funktionsgraph der Funktion f:B_1(0,0)\rightarrow \R mit f(x,y):= \sqrt{1 - x^2 - y^2} betrachtet. Der Definitionsbereich ist die Kreisscheibe B1(0,0) mit Radius 1 in der x,y-Ebene mit dem Mittelpunkt (0,0).

Die Funktion f projiziert diesen Kreis auf die Oberfläche einer Halbkugel vom Radius 1 (die "obere Halbkugel"). Der Pol dieser Halbkugel ist ein Extremwert von f (ein Maximum). Für einen festen Wert von x ist dann f eine Funktion in y. Bei festem x ergeben die Punkte \{(x,y): y\in\R so dass (x,y)\in B_1(0,0)\} eine Strecke parallel zur y-Achse. Diese Strecke wird von f auf eine gekrümmte Linie auf der Oberfläche der Halbkugel projiziert.

Die partielle Ableitung von f nach y bestimmt unter diesen Voraussetzungen die Steigung der Tangente an diese Kurve im Punkt f(x,y). Für jeden Parameter einer Funktion f kann man partielle Ableitungen bestimmen.

Partielle und totale Ableitung nach der Zeit

In der Physik (vor allem in der Theoretischen Mechanik) tritt häufig die folgende Situation auf: Eine Größe hängt durch eine total differenzierbare Funktion f von den Ortskoordinaten x, y, z und von der Zeit t ab. Man kann also die partiellen Ableitungen \tfrac{\partial f}{\partial x}, \tfrac{\partial f}{\partial y}, \tfrac{\partial f}{\partial z} und \tfrac{\partial f}{\partial t} bilden. Die Koordinaten eines sich bewegenden Punktes sind durch die Funktionen x(t), y(t) und z(t) gegeben. Die zeitliche Entwicklung des Werts der Größe am jeweiligen Bahnpunkt wird dann durch die verkettete Funktion

t \mapsto f(x(t),y(t),z(t),t)

beschrieben. Diese Funktion hängt nur von einer Variablen, der Zeit t, ab. Man kann also die gewöhnliche Ableitung bilden. Diese nennt man die totale oder vollständige Ableitung von f nach der Zeit t und schreibt dafür auch kurz \tfrac{\mathrm d f}{\mathrm d t}. Sie berechnet sich nach der mehrdimensionalen Kettenregel wie folgt:

\frac{\mathrm df}{\mathrm dt} = 
\frac{\mathrm d}{\mathrm dt} f(x(t),y(t),z(t),t) = 
\frac{\partial f}{\partial x} \frac{\mathrm dx}{\mathrm dt} +
\frac{\partial f}{\partial y} \frac{\mathrm dy}{\mathrm dt} +
\frac{\partial f}{\partial z} \frac{\mathrm dz}{\mathrm dt} +
\frac{\partial f}{\partial t}

Während bei der partiellen Ableitung \tfrac{\partial f}{\partial t} nach der Zeit nur die explizite Abhängigkeit der Funktion f von t berücksichtigt wird und alle anderen Variablen konstant gehalten werden, berücksichtigt die totale Ableitung \tfrac{\mathrm d f}{\mathrm d t} auch die indirekte (oder implizite) Abhängigkeit von t, die dadurch zustande kommt, dass längs der Bahnbewegung die Ortskoordinaten von der Zeit abhängen.

(Indem man also die implizite Zeitabhängigkeit mitberücksichtigt, redet man im Jargon der Physik auch von „substantieller“ Zeitableitung, bzw. im Jargon der Strömungsmechanik von der Euler-Ableitung im Gegensatz zur Lagrange-Ableitung.)

→ Für eine ausführlichere Darstellung siehe Totales Differential

Verallgemeinerung: Richtungsableitung

Eine Verallgemeinerung der partiellen Ableitung stellt die Richtungsableitung dar. Dabei wird die Ableitung in Richtung eines beliebigen Vektors betrachtet und nicht nur in Richtung der Koordinatenachsen.

Literatur

  • Kurt Endl; Wolfgang Luh: Analysis II, Akademische Verlagsgesellschaft Frankfurt am Main, 1974
  • Hans Grauert; Wolfgang Fischer: Differential- und Integralrechnung II, 2., verbesserte Auflage, Springer Verlag Berlin, 1978

Einzelnachweise

  1. Heuser verweist auf J. f. reine u. angew. Math., Nr. 17 (1837) (Harro Heuser: Lehrbuch der Analysis. Teil 2., Teubner Verlag, 2002, S. 247). Eine detaillierte Herkunft gibt Jeff Miller: [1].

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • partielle Ableitung — partiẹlle Ableitung,   Mathematik: Differenzialrechnung …   Universal-Lexikon

  • partielle Ableitung — wird zur Bestimmung von ⇡ Extremwerten von nicht linearen ⇡ Funktionen mit mehr als einer unabhängigen Variable benötigt. Sie beschreibt eine richtungsabhängige Steigung in Richtung einer unabhängigen Variable. Bei der Bildung der p.A. werden… …   Lexikon der Economics

  • Partielle Differentiation — In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente. Inhaltsverzeichnis 1 Definition 2 Zusammenhang Ableitung, partielle Ableitung, Stetigkeit 3 Verwendung …   Deutsch Wikipedia

  • Partielle Differenzierbarkeit — In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente. Inhaltsverzeichnis 1 Definition 2 Zusammenhang Ableitung, partielle Ableitung, Stetigkeit 3 Verwendung …   Deutsch Wikipedia

  • Partielle Differenzialgleichung — Eine Partielle Differentialgleichung (Abkürzung PDG oder PDGL, beziehungsweise PDE für engl. partial differential equation) ist eine Differentialgleichung, die partielle Ableitungen enthält. Sie dienen der mathematischen Modellierung vieler… …   Deutsch Wikipedia

  • Ableitung (Mathematik) — Die Differential bzw. Differenzialrechnung ist ein Gebiet der Mathematik und ein wesentlicher Bestandteil der Analysis. Sie ist eng verwandt mit der Integralrechnung, mit der sie unter der Bezeichnung Infinitesimalrechnung zusammengefasst wird.… …   Deutsch Wikipedia

  • Partielle Differentialgleichung — Eine partielle Differentialgleichung (Abkürzung PDG oder PDGL, beziehungsweise PDE für engl. partial differential equation) ist eine Differentialgleichung, die partielle Ableitungen enthält. Solche Gleichungen dienen der mathematischen… …   Deutsch Wikipedia

  • Partielle Integration — Die partielle Integration, auch Produktintegration genannt, ist in der Integralrechnung eine Möglichkeit zur Bestimmung von Stammfunktionen. Sie kann als die Umkehrung der Produktregel der Differentialrechnung aufgefasst werden. Für die partielle …   Deutsch Wikipedia

  • Frechet-Ableitung — Die Fréchet Ableitung (nach Maurice René Fréchet) verallgemeinert den Begriff der Ableitung aus der üblichen Differentialrechnung im auf normierte Räume. Inhaltsverzeichnis 1 Definition 1.1 Äquivalente Definition 2 Beispiele …   Deutsch Wikipedia

  • Kovariante Ableitung — Die kovariante Ableitung ist ein verallgemeinerter Ableitungsbegriff in nahezu beliebigen Räumen, genauer gesagt in differenzierbaren Mannigfaltigkeiten. Die kovariante Ableitung bedarf zu ihrer Definition einer zusätzlichen, räumlich… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”